Leitungen

Katalog

10-7.10

SensyMIC – Mantelleitungen	
Se	ite
Allgemeines	. 2
Lieferprogramm	
Standardausführungen	
Sonderausführungen	
Fertigungslängen Mindestauftragswert	
Technische Daten	
Isolierkeramik	
Isolationswiderstand	
Schleifenwiderstand (Innenleitungswiderstand)	
Verarbeitung	
Toleranzen und Temperaturbereiche	
Der K-Zustand in NiCr-Ni-Thermoelementen (Typ K)	. 5
Standard-Mantelwerkstoffe	. 7
Mantelthermoelementleitungen	. (
Mantelleitungen	11
Mantelthermoelemente mit Edelmetall-Thermopaaren	12
Einsatz	
Standardausführung	12
Sonderausführung	
Maximale Fertigungslängen	12
SensyHeat – Heizleitungen	
SensyHeat – Heizleitungen	13

Katalog

SensyMIC - Mantelleitungen

Allgemeines

Mantelleitungen haben einen Außenmantel aus Metall und 2 bis 8 Innenleiter. Die Isolation besteht aus hochkomprimiertem Metalloxidpulver (vorzugsweise MgO oder Al₂O₃).

Mantelleitungen für Thermoelemente haben Innenleiter aus Thermomaterial. Mantelleitungen für Widerstandsthermometer haben Innenleiter aus Kupfer, Kupfer-Nickel-Legierungen, Nickel, Nickel-Chrom oder nickelplattiertem Kupfer.

Mantelleitungen sind ausgelegt für den Einsatz bei hohen Temperaturen und werden überall dort eingesetzt, wo besonders hohe Anforderungen in Bezug auf mechanische, chemische und elektrische Stabilität gestellt werden.

Wegen ihrer guten Biegbarkeit werden diese Leitungen bevorzugt auch dort eingesetzt, wo schwierige räumliche Verhältnisse bestehen und ein flexibler Einsatz gewünscht ist, wie z.B. im Labor oder in Versuchsanlagen. Die minimalen Biegeradien liegen bei $3\times\,$ D (D = Außendurchmesser der Leitung).

Durch die Entwicklung rationeller Verarbeitungsverfahren sind Mantelleitungen heute ein immer häufiger eingesetztes Vormaterial zur Herstellung genormter Thermoelemente und Widerstandsthermometer, insbesondere im Bereich der industriellen Meß- und Regelungstechnik sowie in der KFZ-Sensorik.

Lieferpogramm

SENSYCON bietet ein breites Programm an Mantelleitungen zur Herstellung von Mantel-Thermoelementen und Mantel-Widerstandsthermometern an.

Alle genormten Thermopaare Typ K, J, L, T, U, E und N, sowie die Edelmetall-Thermopaare Typ R, S und B können als Mantelthermoelementleitung geliefert werden. Auch verschiedene Mantelleitungen mit Cu-, CuNi-, Ni- und NiCr- Innenleitern sind ab Lager lieferbar.

Es sind allerdings nicht alle Kombinationen aus Mantelwerkstoff und Thermopaar möglich, da z.B. bei hochwarmfesten Mantelwerkstoffen die notwendigen Wärmebehandlungen zum Teil wesentlich oberhalb der maximal zulässigen Temperaturen für die Leiter liegen.

Als Mantelwerkstoffe stehen folgende Stähle und Legierungen zur Verfügung:

1.4301	entspricht	AISI 304
1.4306	entspricht	AISI 304 L
1.4404	entspricht	AISI 316 L
1.4541	entspricht	AISI 321
1.4571	entspricht	AISI 316 TI
1.4749	entspricht	AISI 446
1.4841	entspricht	AISI 314
1.4845	entspricht	AISI 310 S
1.4876	entspricht	INCOLOY 800
2.4816 2.4851 2.4951 Platin 10	entspricht entspricht entspricht % Rhodium	INCONEL 600 INCONEL 601 Nimonic 75

Spezialwerkstoffe

Für spezielle Anwendungsfälle können Sonderausführungen hergestellt werden, beispielsweise mit besonderen Werkstoffen und Isolationsmaterialien oder mit Sondertoleranzen.

Standardausführungen

Die im Katalog fett gedruckten Bestellnummern sind Standardausführungen und kurzfristig lieferbar.

Sonderausführungen

Die im Katalog normal gedruckten Bestellnummern sind Sonderausführungen und nicht ab Lager lieferbar. Sie können jedoch mit einer Mindestbestellmenge (eine Fertigungslänge) und einer Mindestfertigungszeit hergestellt werden.

Fertigungslängen

Die Fertigungslängen von Mantelleitungen sind abhängig von den Längen der Ausgangsrohre.

Es werden folgende Längen gefertigt:

Ø (mm)	Fertigungslänge (ca. m)
0,5	500 m
1,0	600/1.000 m
1,5	310/1.500 m
1,6	250/1.300 m
2,0	700 m
	/
3,0	420/530 m
3,2	365/460 m
4,5	180 m
4,8	160 m
6,0	105 m
6,4	88 m
8	58 m
-	
10	35 m

Mindestauftragswert

Der Mindestauftragswert beträgt 300,– DM/150,– Euro. Bei einem Auftragswert unter 300,– DM/150,– Euro und Mengen kleiner als eine Fertigungslänge berechnen wir einen Zuschlag von 25 %.

SensyMIC - Mantelleitungen

Technische Daten

Isolierkeramik

Neben dem Standardwerkstoff MgO mit einer Reinheit von \geq 96 % kann MgO auch mit einer Reinheit von ≥ 99,4 % und weiterhin Al₂O₃ geliefert werden.

Isolationswiderstand

Die Isolationswiderstände sind von der Reinheit der verwendeten Isolierkeramik, dem Fertigungsverfahren und vom Feuchtigkeitsgehalt der Isolation abhängig. Die Leitungen werden in einwandfrei getrocknetem Zustand mit versiegelten Enden ausgeliefert. Die unten genannten Werte des Isolationswiderstandes werden für diesen Anlieferungszustand garantiert (siehe Tabelle 1).

Der Isolationswiderstand ist auch abhängig von der Länge der Leitung. Er wird deshalb als längenbezogener Widerstand in der Einheit $\Omega \times m$ angegeben.

Beispiel:

 $L = 100 \text{ m; } R_{is} = 10 \text{ M}\Omega$ $R_{is} = 10 \text{ M}\Omega \times 100 \text{ m} = 1000 \text{ M}\Omega \times \text{m}$

Der Mindestwert bei Raumtemperatur ist nach DIN EN 61515: 1000 M $\Omega \times m$.

Die Norm DIN EN 61515 sieht die in der Tabelle 1 angegebenen Mindestforderungen vor.

Prüfspannungen

Außendurchmesser \leq 1,5 mm: 75 V \pm 25 V DC Außendurchmesser > 1,5 mm: 500 V ± 50 V DC

Bei höheren Temperaturen können Mindestwerte auf Anfrage bestätigt werden.

Schleifenwiderstand (Innenleitungswiderstand)

Für die Meßfehlerbeurteilung ist neben dem Isolationswiderstand auch der Schleifenwiderstand eine wichtige Kenngröße. Je niedriger der Schleifenwiderstand ist, desto geringer ist sein Einfluß auf die Meßgenauigkeit.

Höchstwerte für den Schleifenwiderstand für verschiedene MTE-Leitungen finden Sie in Tabelle 2.

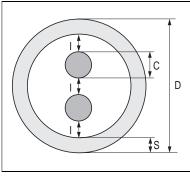
Verarbeitung

Bei der Verarbeitung der Leitung muß streng darauf geachtet werden, daß die Leitung nach Öffnen der Versiegelung oder dem Zuschneiden wieder ausreichend getrocknet und unmittelbar nach dem Trocknen feuchtigkeitsdicht verschlossen wird. Lagern mit offenen Enden sollte unbedingt vermieden werden.

Tabelle 1: Isolationswiderstand bei Umgebungstemperatur und erhöhten Temperaturen
(Die angegebenen Werte gelten für den Einsatz im Betrieb und nicht für die Endkontrolle beim Hersteller.)

	Eintauchtiefe auf Prüftemperatur	Prüftemperatur °C	Isolationswiderstand MΩm
	m	C	IVI22111
Umgebungstemperatur	1	20 ± 15	1000
Erhöhte Temperatur Typen J, E, K und N	0,5	500 ± 15	5
Erhöhte Temperatur Typ T	0,5	300 ± 10	500

Der Isolator von Mantelthermoelement-Leitungen und Mantelthermoelementen hat eine bestimmte elektrische Leitfähigkeit, weshalb der Isolationswiderstand mit steigender Länge der Leitung oder des Thermoelementes abnimmt. Der Leitwert einer bestimmten Leitung oder eines Thermoelementes wird in Sm $^{-1}$ (entsprechend Ω^{-1} m $^{-1}$) und somit der Mindestisolationswiderstand in Ω m oder M Ω m – für Leitungen oder Thermoelemente mit einer Länge von mehr als 1 m - ausgedrückt. Für kürzere Längen wird der Mindestisolationswiderstand in $M\Omega$ angegeben.


Thermoelement		Außen ∅ mm											
(TP = Thermopaar)	0,5	1,0	1,5	1,6	2,0	3,0	3,2	4,5	4,8	6,0	6,4	8,0	
1 TP NiCr-Ni	150	32/44	15/19	13/18	10,5	6,4	5,3	2,8	2,5	1,6	1,4	0,9	
2 TP NiCr-Ni						6,2		3,1		1,6		0,8	
1 TP Fe-CuNi	130	34	15	13	8,6	4,2	3,0	1,7	1,4	1,0	0,7	0,5	
2 TP Fe-CuNi						3,7		1,8		1,0		0,5	

SensyMIC - Mantelleitungen

Abmessungen

Die Tabelle zeigt die Grenzabweichungen der Außendurchmesser, die Mindestwandstärke, den Mindest-Leiterdurchmesser und die Dicke der Isolation in Anlehnung an DIN EN 61515.

Außendurchmesser der Leitung (D) Nennwert ± Grenzabweichung mm	Mindest- wanddicke (S) mm	Mindestdurchmesser der Innenleiter (C) mm	Mindestdicke (I) der Isolation mm
0,5 ± 0,025 1,0 ± 0,025	0,05 0,10	0,08 0,15	0,04 0,08
1,0 ± 0,025 1,5 ± 0,025	0,10	0,13	0,00
1,6 ± 0,025	0,15	0,23	0,12
2,0 ± 0,025	0,10	0,30	0,16
2,0 ± 0,023	0,20	0,30	0,10
3.0 ± 0.030	0,30	0,45	0,24
$3,2 \pm 0,030$	0,32	0,48	0,26
4.0 ± 0.045	0,40	0,60	0,32
$4,5 \pm 0,045$	0,45	0,68	0,36
4.8 ± 0.045	0,48	0,72	0,38
6.0 ± 0.060	0,60	0,90	0,48
$6,4 \pm 0,060$	0,64	0,96	0,51
8.0 ± 0.080	0,80	1,20	0,64
$10,0 \pm 0,100$	1,00	1,50	0,80

D = Außendurchmesser

C = Leiterdurchmesser

S = Wanddicke

I = Dicke der Isolation

Grenzabweichungen und Temperaturbereiche für Thermopaare

Thermoelement Typ	Temperaturbereich °C	Grenzabweichung
Thermopaare nach DIN EN 60584		
Klasse 1		
Е	- 40 bis + 800	± 1,5 °C oder ± 0,004 × t
J	- 40 bis + 750	± 1,5 °C oder ± 0,004 × t
K/N	- 40 bis + 1000	± 1,5 °C oder ± 0,004 × t
Klasse 2		
Е	- 40 bis + 900	± 2,5 °C oder ± 0,0075 × t
J	- 40 bis + 750	± 2,5 °C oder ± 0,0075 × t
K/N	- 40 bis + 1200	± 2,5 °C oder ± 0,0075 × t
Т	- 40 bis + 350	± 1 °C oder ± 0,0075 × t
R/S	± 0 bis + 1600	± 1,5 °C oder ± 0,0025 × t
Klasse 3		
В	+ 600 bis + 1700	± 4 °C oder ± 0,005 × t
Thermopaare nach DIN 43 710		
U	-200 bis + 600	von 0 bis +400 °C ± 3 °C von +400 bis +600 °C ± 0,0075 × t
L	-200 bis + 900	von 0 bis +400 °C \pm 3 °C von +400 bis +900 °C \pm 0,0075 \times $ t $

Leitungen Katalog
10-7.10

SensyMIC - Mantelleitungen

Der K-Zustand in NiCr-Ni-Thermoelementen (Typ K)

Thermoelemente vom Typ K sind die am meisten eingesetzten Thermoelemente in der Prozeßmeßtechnik – und nicht nur dort. Sie stellen eine technisch wie wirtschaftlich optimale Lösung dar:

- weiter Temperaturbereich von -200 bis +1200 °C
- gute Langzeitstabilität unter oxidierenden Bedingungen
- hohe meßtechnische Empfindlichkeit von 40 μV/°C
- hervorragende Eignung in Mantelthermoelementen
- gegenüber Edelmetallen günstiger Preis

Immer wieder werden Stimmen laut, die diesen Thermoelementen die Eignung für die in der industriellen Meß- und Regeltechnik notwendigen Genauigkeiten absprechen, und zwar auf Grund des K-Zustandes, dem diese Legierungen unterworfen sind.

Was ist der "K"-Zustand?

Der "K"-Zustand ist ein Phänomen, das bei Nickel-Chrom-Legierungen auftritt und das sich insbesondere auf die thermoelektrischen Eigenschaften dieser Legierungen auswirkt. Es sind dies magnetische Ordnungszustände der einzelnen Gitterbausteine.

Man unterscheidet:

- einen "geordneten" Zustand, den schon genannten "K"-Zustand und
- einen "ungeordneten" Zustand, der im folgenden
 "U"-Zustand genannt werden soll.

Man kann sich das so vorstellen, daß die Gitterbausteine im "K"-Zustand in Reih und Glied stehen, während sie im "U"-Zustand wild durcheinander laufen.

Diese Zustände können durch bestimmte Temperaturbehandlungen erzeugt und beliebig rückgängig gemacht oder umgekehrt werden

Daneben kommen – und das ist ein häufig auftretender Fall – beliebige Übergangszustände zwischen den beiden oben genannten Zuständen vor.

Was bewirken Ordnungszustände?

Die Thermospannung eines NiCr-Schenkels im "K"-Zustand kann gegenüber einem identischen Schenkel im "U"-Zustand je nach Temperatur und Prüfmethode um ein Äquivalent von 2 bis 3 °C höher sein. In den Übergangszuständen verringert sich dieser Wert.

Wie entstehen Ordnungszustände?

Oberhalb 600 °C herrscht in einer NiCr-Legierung immer der "U"-Zustand; er stellt sich nach Erreichen dieser Temperatur sehr schnell ein.

Kühlt man die Legierung schnell (in wenigen Minuten) auf Raumtemperatur ab, bleibt der "U"-Zustand erhalten, so lange die Legierung nicht wieder über Raumtemperatur erwärmt wird. Er ist sozusagen eingefroren.

Kühlt man die Legierung langsam (in einigen Stunden)auf Raumtemperatur ab, stellt sich im allgemeinen ein Übergangszustand zwischen "K" und "U" ein.

Hält man die Legierung in einem Temperaturbereich von 250 bis 500 °C über längere Zeit, dann stellt sich der "K"-Zustand ein, der so lange bestehen bleibt, bis die Legierung wieder auf 600 °C oder höher erwärmt wird.

Mit welcher Wärmebehandlung werden Mantelthermoelemente ausgeliefert?

Alle Hersteller wenden nach dem letzten Ziehvorgang eine Glühung an, um die durch plastische Verformungen entstandenen Verfestigungen des Mantels und der Drähte abzubauen, d.h. um das Mantelthermoelement weich und somit leicht biegbar und große Veränderungen der Thermospannung rückgängig zu machen

Diese Glühungen finden durchweg bei Temperaturen oberhalb $600~^{\circ}\text{C}$ statt, d.h. die Drähte befinden sich im "U"-Zustand.

Üblicherweise versucht man, die Leitungen nach der Glühung möglichst schnell abzukühlen, um z.B. bei Mänteln aus rostbeständigen austenitischen Stählen (1.4571 oder dgl.) Ausscheidungsvorgänge zu vermeiden, die eine Schweißbarkeit beeinträchtigen würden. In den Drähten erzielt man dadurch einen mehr oder weniger undefinierten Übergangszustand zwischen "K" und "U"; lediglich bei einigen Anlagen zur Durchlaufkühlung kann man bei kleinen Leitungsquerschnitten eine so schnelle Abkühlung erzielen, daß der "U"-Zustand eingefroren wird.

Wie verhalten sich Thermoelemente in den unterschiedlichen Auslieferungszuständen?

Thermoelemente werden üblicherweise so eingebaut, daß sich ihre Meßstelle bei einer erhöhten Temperatur befindet. Die Temperatur entlang der Gesamtlänge des Thermoelementes fällt dann mit einem beliebigen Verlauf auf Raumtemperatur ab.

Bei einem völlig homogenen Thermoelement, d.h. wenn die Thermoschenkel von vorne bis hinten absolut gleichartig sind und keinerlei örtliche Gefügeveränderungen oder Verunreinigungen aufweisen, ist die Thermospannung ausschließlich von der Differenz zwischen Meßstelle und Vergleichsstelle abhängig.

Ist das Thermoelement dagegen nicht mehr homogen, treten Abweichungen von der ursprünglichen Thermospannung auf, die abhängig sind von Art und Stärke der Inhomogenität und dem Temperaturverlauf entlang des Thermoelementes.

Jedes Thermoelement vom Typ K – gleichgültig in welchem Zustand die Leitung ausgeliefert wurde – wird sich nach dem Einbau und beim ersten Gebrauch verändern, da es immer durch einen Temperaturbereich geführt wird, in dem sich nach längerer Zeit der "K"-Zustand einstellt.

Wichtig dabei ist, daß sich der "K"-Zustand auch bei Temperaturen leicht unterhalb 250 °C einstellt, nur deutlich langsamer, d.h. es kann Wochen dauern.

Leitungen Katalog

10-7.10

SensyMIC - Mantelleitungen

Was passiert beim ersten Aufheizen auf 600 °C und mehr?

Für die folgende Betrachtung wird ein "normaler" Einbau der Thermoelemente vorausgesetzt, wie er in der Prozeßtechnik üblich ist:

Das Thermoelement ist fest eingebaut und die Betriebstemperatur ist immer in der gleichen Größenordung.

1. Auslieferung im "U"-Zustand

An der Meßstelle passiert nichts, denn dort herrscht bereits der "U"-Zustand. Im sogenannten Temperaturgradienten, d.h. wo die Temperatur zum Ende hin abfällt, wird sich allmählich ein "K"-Zustand einstellen, was (siehe oben) Wochen dauert. Während dieser Zeit ändert sich die Abweichung von der wahren Thermospannung laufend. Eine verläßliche Temperaturmessung und -regelung ist nicht gegeben. Am kalten Ende entsteht dann wieder ein Übergang vom "K"-Zustand zum "U"-Zustand, eine weitere Inhomogenität mit zusätzlichem Einfluß auf die Thermospannung.

2. Auslieferung im Übergangszustand

An der Meßstelle stellt sich der "U"-Zustand ein, was relativ schnell geht. Im Temperaturgradienten geschieht dann wieder die schleichende Entwicklung des "K"-Zustandes und am kalten Ende entsteht wieder der Übergang vom "K"-Zustand zum Übergangszustand als zusätzliche Fehlerquelle.

3. Auslieferung im "K"-Zustand

An der Meßstelle entsteht sehr schnell der "U"-Zustand. Im Temperaturgradienten und am kalten Ende geschieht nichts, da hier überall bereits der "K"-Zustand vorhanden ist, d.h. man hat sofort eine stabile und verläßliche Temperaturanzeige.

Wie werden Mantelthermoelemente geprüft?

Zur Thermospannungsprüfung – wenn sie zuverlässig sein soll – werden die Proben in den "K"-Zustand versetzt.

Wird dies nicht getan, geschieht bei der Kalibrierung genau das, was oben für die beiden ersten Auslieferungszustände geschildert wurde.

Wann ist eine zuverlässige Temperaturmessung zu erwarten?

Nur bei Auslieferung der Mantelthermoelemente im stabilen "K"-Zustand kann man eine zuverlässige Temperaturmessung erwarten, die auch mit der Thermospannung übereinstimmt, wie sie bei der Prüfung ermittelt wurde. Also sollten Mantelthermoelemente ausschließlich im stabilen "K"-Zustand ausgeliefert werden.

SENSYCON wendet als einziger Hersteller eine aufwendige zweite Schlußglühung an, die sicherstellt, daß sich die gesamte Leitung im stabilen "K"-Zustand befindet.

Leitungen Katalog

10-7.10

SensyMIC - Mantelleitungen

Standard-Mantelwerkstoffe

Mantelwerkstoffe

Grundsätzlich sind Mantelthermoelemente mit Mänteln aus allen verformbaren Mantelwerkstoffen herstellbar, insbesondere aus der gesamten Palette der austenitischen nichtrostenden Stähle. Aber auch Nickelbasislegierungen kommen für bestimmte Anwendungen in Frage. Außerdem sind Sonder-Mantelwerkstoffe lieferbar.

Max. Einsatz- temperatur	Mantelwerkstoff	Werkstoffeigenschaften	Einsatzgebiete
800 °C	1.4301 AISI 304 1.4306 AISI 304 L	Die Werkstoffe 1.4301 und 1.4306 haben einen unterschiedlich niedrigen Kohlenstoffgehalt und unterscheiden sich insbesondere in ihrem Verhalten gegen interkristalline Korrosion. Gute Beständigkeit gegen organische Säuren bei mäßigen Temperaturen, Salzlösungen, wie z.B. Sulfate, Sulfide und Sulfite, alkalische Lösungen bei mäßiger Temperatur. Gute Schweißeigenschaften. Eine Schweißnachbehandlung ist insbesondere bei 1.4306 im allgemeinen nicht erforderlich.	Chemischer Apparatebau, Kernkraft, Textil- und Papierindustrie, Fett- und Seifenindustrie, Nahrungsmittelgewerbe, Molkerei- und Brauereibetriebe, Salpetersäureindustrie.
800 °C	1.4404 AISI 316 L	Durch den Zusatz von Molybdän höhere Korrosionsbeständigkeit in nicht oxidierenden Säuren, wie Essigsäure, Weinsäure, Phosphorsäure, Schwefelsäure und anderen. Erhöhte Lochfraßbeständigkeit. Gute Schweißeigenschaften. Eine Wärmebehandlung ist im	Sulfit-, Zellstoff-, Textil-, Farben-, Fettsäure-, Seifen- und pharmazeutische Industrie.
		allgemeinen nicht erforderlich.	
800 °C	1.4541 AISI 321	Gute interkristalline Korrosionsbeständigkeit – auch nach dem Schweißen. Gute Beständigkeit gegen Schwerölprodukte, Dampf und Verbrennungsabgase. Gute Oxidationsbeständigkeit. Kontinuierlich einsetzbar bis ca. 800 °C. Gute Schweißeigenschaften bei allen Standard-Schweißverfahren, keine Schweißnachbehandlung notwendig, gute	Kernkraft- und Reaktorbau, chemischer Apparatebau, Glühöfen, Wärmetauscher, Papier- und Textilindustrie, Petrochemie, Erdölindustrie, Fett- und Seifenindustrie, Nahrungsmittelgewerbe.
		Verformbarkeit.	
800 °C	1.4571 AISI 316 TI	Erhöhte Korrosionsbeständigkeit gegenüber bestimmten Säuren durch Zusatz von Molybdän. Resistent gegen Lochfraß, Salzwasser und aggressive Industrieeinflüsse. Kontinuierlich einsetzbar bis ca. 800 °C. Gute Schweißeigenschaften bei allen Standard-Schweißverfahren, keine Schweißnachbehandlung notwendig. Gute Duktilität.	Kernkraft- und Reaktorbau, chemischer Apparatebau, Ofenbau, chemische und pharmazeutische Industrie.
1150 °C	1.4749 AISI 446	Extrem gute Beständigkeit gegen reduzierende, schwefelhaltige Atmosphäre. Sehr gute Beständigkeit gegen Oxidation und Luft. Gute Beständigkeit gegen Korrosion durch Verbrennungsasche, Kupfer-, Blei- und Zinnschmelzen. Gute Schweißeigenschaften bei Anwendungen von Lichtbogen-Schweißen und WIG-Schweißen. Vorwärmung auf 200 - 400 °C wird empfohlen. Eine Nachbehandlung ist nicht notwendig.	Petrochemie, Metallurgie, Energietechnik, Rekuperatoren, Wärmebehandlungsöfen, Anlagen für Wirbelbettfeuerungen, Müllverbrennungsanlagen.

SensyMIC - Mantelleitungen

Max. Einsatz- temperatur	Mantelwerkstoff	Werkstoffeigenschaften	Einsatzgebiete
1150 °C	1.4841 AISI 314	Ausgezeichnete Korrosionsbeständigkeit, auch bei hohen Temperaturen. Auch in kohlenstoff- und schwefelhaltigen Atmosphären geeignet. An Luft Oxidationsbeständigkeit bis 1000 °C (unterbrochener Betrieb) bzw. 1150 °C (kontinuierlicher Betrieb). Gut geeignet bei hoher Temperaturwechselbelastung. Langzeitige kontinuierliche Verwendung im Temperaturbereich von 425 - 850 °C wird empfohlen.	Dampfkessel und Hochöfen, Zement- und Ziegelöfen, Glasherstellung, Erdöl- und Petrochemie, Ofenbau, Kraftwerke.
		Gute Schweißeigenschaften bei Anwendungen von Lichtbogen-Schweißverfahren. Thermische Nachbehandlung ist nicht notwendig. Gute Verformbarkeit im Anlieferungszustand. Nach längerem Einsatz ist mit leichter Versprödung zu rechnen.	
1100 °C	1.4845 AISI 310 S	Gute Beständigkeit gegen Oxidation und Sulfidisierung. Durch den hohen Chromgehalt beständig gegen wässrige Lösung oxidierender Art sowie gute Beständigkeit gegen chlorinduzierte Spannungsriß-Korrosion. Gute Beständigkeit in Cyanidschmelzen und neutralen Salzschmelzen bei hohen Temperaturen. Für Grünfäule nicht empfindlich.	wie 1.4841
		Gut schweißbar. Es wird empfohlen, mit geringer Wärmeeinbringung zu schweißen. Bei Gefahr inter- kristalliner Korrosion nach dem Schweißen Lösungsglühen.	
1100 °C in Luft	1.4876 Incoloy 800 ™	Durch Zusatz von Titan und Aluminium hat der Werkstoff besonders gute Werte für die Warmfestigkeit. Geeignet für Anwendungszwecke, wo neben Zunderbeständigkeit höchste Belastbarkeit gefordert wird. Ausgezeichnet beständig gegen Aufkohlung und Aufstickung.	Kraftwerke, Erdöl- und Petrochemie, Ofenbau.
		Der Werkstoff ist gut schweißbar mit Lichtbogen- und WIG-Verfahren. Eine Wärmebehandlung nach dem Schweißen ist nicht erforderlich.	
1100 °C	2.4816 Inconel 600 ™	Gute allgemeine Korrosionsbeständigkeit, beständig gegen Spannungsriß-Korrosion. Ausgezeichnete Oxidationsbeständigkeit. Nicht empfohlen bei CO ₂ - und schwefelhaltigen Gasen oberhalb 550 °C und Natrium oberhalb 750 °C. An Luft beständig bis 1100 °C. Gute Schweißeigenschaften bei Anwendung aller Schweißtechniken. Ausgezeichnete Verformbarkeit auch nach längerem Einsatz.	Druckwasserreaktoren, Kernkraft, Ofenbau, Kunststoffindustrie, Wärmevergütung, Papier- und Nahrungsmittelindustrie, Dampfkessel, Flugmotoren.
1100 °C	2.4951 Nimonic 75 ™	Hervorragende Hochwarmfestigkeit und Beständigkeit gegen Oxidation und Aufkohlung. Durch Verbindung von Nickel und Chrom sehr gute Beständigkeit gegen heiße, gasförmige Medien. Beständigkeit gegen thermische Ermüdung und Thermoschock.	Raumfahrt, Flugzeugbau, Kernreaktoren, Maschinenbau, Metallbearbeitung, thermische Verfahrenstechnik.
		Gute Schweißeigenschaften bei Anwendung aller Schweißtechniken. Ausgezeichnete Verformbarkeit auch nach längerem Einsatz.	
1300 °C	Pt 10 % Rh	Hochtemperaturbeständig bis 1300 °C unter oxidierenden Bedingungen. In Anwesenheit von Sauerstoff, Schwefel, Silizium hohe Warmfestigkeit bis 1200 °C. Besondere Beständigkeit in Halogenen, Essigsäuren, NaHCI-Lösungen etc. Versprödung durch Aufnahme von Silizium aus Armierungskeramiken. Über 1000 °C Schwefeleutektika möglich. Phosphor-Empfindlichkeit.	Glas-, elektrochemische und katalytische Technik, chemische Industrie, Laborbetriebe, Schmelz-, Glüh- und Brennöfen. Endlagerung von Produkten der Kernenergie.

[™] Markenzeichen Inco Alloys

SensyMIC - Mantelleitungen

Тур		K (NiCr-N	i)	J (Fe-CuN	li)	L (Fe-Cul	li)	E (NiCr-C	uNi)	N (NiCrSi	-NiSi)	T (Cu-Cul	Ni)
Mantel- Werkstoff	Ø mm	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP
1.4301 AISI 304	3,0								7963328				
	4,5		7963404										
	6,0	7963532	7963441						7963359				
1.4306 AISI 304 L	4,5		7963502										
1.4404	1,5	7963424											
AISI 316 L	2,0	7963416											
	3,2	7963473											
	6,0	7963425	7963426										
1.4541	1,0			7961457		7963301		7960340				7963371	
AISI 321	1,5	7960336		7960376								7963304	
	2,0			7960377	7960384	7963321							
	2,4	7963341											
	3,0	7960351	7960352	7960379	7960385	7960347	7960348	7960391				7960388	
	4,0			7960383		7960360							
	4,5	7960353	7961453	7961460	7963347	7963349	7963348	7963498	7963499			7963346	
	4,8	7963526											
	6,0	7960354	7960355	7960381	7960387	7960349	7960350	7963360	7963450			7960390	7963517
	6,35								7963403				
	9,5				7963475								
1.4571	1,0	7960312		7963494	7000110	7960308						7963386	
AISI 316 TI	1,5	7960313		7963307	7963524	7960309		7963306				7963308	
	1,6	7961469											
	2,0	7963490				7963449							
	3,0	7960314	7960315	7961458	7963525	7960310	7963330	7963331				7960389	
	3,2	7960361	7963535	7001.00	7.000020	7.0000.10	7.00000	700001				7963461	
	4,5	7963467	7963351	7961461		7963353	7963352					1000101	
	4,8	7960372	7963438	7001101		700000	700002						
				7960382	7963436		7960311						7963365
				7300302	7300430		7300011						7300000
1.4749			7303037								7063446		
AISI 449													
			7963366							7963449			
			7 303300							7303440	1 300441		
Doppelmantel													
1.4841	3,0 7963332 7963333 7963333 7963333 79633447 7963448 7963447 7963329 7963311 7963311												
AISI 314	1,0	7960358 7960345											
	1,5 2,0	7960345											
			7960341										
	3,0	7960346											
	4,0	7961452	7960342										
	4,5	7963355											
	6,0	7960337	7960356								l		

SensyMIC – Mantelleitungen

Тур	Ø	K (NiCr-N	li)	J (Fe-Cul	li)	L (Fe-Cul	L (Fe-CuNi)		uNi)	N (NiCrSi	-NiSi)	T (Cu-CuNi)	
Mantel Werkstoff	Ø mm	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP	1 TP	2 TP
1.4845	3,0	7960368											
AISI 310 S	4,5	7960369											
	6,0	7960370	7960371										
1.4876	1,5	7963310											
Incoloy 800™	1,8	7963316											
	3,0	7960357	7963413										
	4,5	7963395											
	6,0	7960344	7963368			7963369							
	8,0	7963379	7963419										
	9,5	7963523	7963444										
	10,0	7963382	7961454										
	12,0	7963383											
1.4893	3,0										7963442		
2.4816	0,25	7963538											
Inconel 600™	0,5	7960325											
	0,8	7963539											
	1,0	7960326		7963303		7960359				7963302			
	1,5	7960327	7960362	7960375	7963305	7960319	7963312			7960364			
	1,6	7960338		7963315									
	2,0	7960339	7963325	7963417			7963324						
	2,3	7963396											
	2,5	7963326											
	3,0	7960328	7960329	7960378	7961462	7960320	7963340	7963431	7963339	7960365	7963336		
	3,2	7960343	7963536							7963527			
	4,5	7960330	7960331	7961459	7963439	7960321	7960322			7960572	7963356		
Doppelmantel	4,5	7963433											
	4,8	7961455											
	6,0	7960332	7960333	7960380	7960386	7960323	7960324	7963375	7960586	7960366	7963372		
	6,4	7960363	7960367	700000	700000	7000020	7000021	1000010	700000	700000	7000072		
Doppelmantel	6,5	7963509	7963492										
_ 5660111011101	7,8	7963455	7963456			7963377							
	8,0	7960334	7960335	7963430		7963380				7963381			
	9,0		7963334	. 555 100						, 555501			
	9,5	7963454	7963453										
2.4951	1,8	7963317	1 500+00										
2.4951 Nimonic 75™	3,0	7963317											
Donnolmantal													
Doppelmantel	3,0	7963412											
Doppelmantel	6,0	7963435											
	8,0	7963489											

[™] Markenzeichen Inco Alloys

Leitungen

Katalog

SensyMIC - Mantelleitungen

Mantelleitungen						
Leiter	Ø mm	Werksto	ff			
		1.4404	1.4541	1.4571	2.4816	
2 x Cu	1,50		7963414			
	1,60		7963313	7963314		
	2,00		7963320			
	3,00		7960400	7961464		
	4,50			7963496		
	4,78	7963415		7963521		
	6,00		7960401	7960395		
3 x Cu	1,60			7963459		
	2,00		7963319			
	3,00				7963338	
	4,78	7963471		7961467		
4 x Cu	1,00 S		7963506			
	1,30 S		7963507			
	2,00		7963318			
	2,80		7963389			
	3,00		7960399	7960396	7963337	
	4,00		7963343	7963344		
	4,50	7963357	7963350	7960404		
	4,78	7963460		7961468		
	4,80		7963387			
	5,00		7963385	7963358		
	5,00 S		7963495			
	6,00		7960402	7960397	7963373	
	6,00 S		7963364			
	6,40			7960588		
	8,00			7963451		
6 x Cu	4,50			7963409		
	4,80		7963388			
	5,00		7963508	7963502		
	6,00		7960403	7961465		
	6,00 S		7963491			
	8,00			7963362		

Mantelleitungen								
Leiter	Ø mm	Werksto	Werkstoff					
		1.4404	1.4541	1.4571	2.4816			
8 x Cu	3,00			7963539				
	6,00		7963420					
3 x CuNi	6,00		7963402					
4 x CuNi	6,00		7963280					
6 x CuNi	6,00		7963281					
2 x Ni	3,00		7963354					
3 x Ni	2,40			7963411				
	3,00		7963501					
	4,50	7963466						
	6,00	7963408						
4 x Ni	3,20 S			7963398				
	3,50 S	7963445						
	4,50			7963695				
	4,80 S		7963694	7963399				
	6,00	7963465						
	6,40 S			7963400				
	8,00			7963401				
6 x Ni	6,00	7963423						
2 x NiCr	2,50				7963327			
	3,00		7961463					
	6,00		7963361					
4 x NiCr	2,00				7963323			
	3,00		7960392	7963468				
	4,50		7963345					
	6,00		7960393	7963469				
	6,00 S		7961466					
6 x NiCr	6,00		7960394	7963470				
	8,00		7963457					
8 x NiCr	6,00		7960398					
2 x 2.4816	6,00				7963374			

S = Sonderausführung

SensyMIC - Mantelleitungen

Mantelleitungen mit Edelmetall-Thermopaaren

Edelmetall-Mantel-Thermoelemente eignen sich hervorragend bei Hochtemperaturanwendungen unter oxidierenden Bedingungen. In Chemieanlagen werden sie eingesetzt, wenn absolute Beständigkeit gegen Säuren aller Art gefordert wird.

Beständig	Beständigkeit von Edelmetall-Mantel-Thermoelementen bei verschiedenen Atmosphären								
Mantel- werkstoff	Thermo- paar	Max. Betriebs- temperatur	Sauerstoff	Stickstoff	Wasser- stoff	Kohlen- stoff	Chlor	Schwefel	Klasse der Grenzab- weichung
2.4816	Typ S	1100 °C *	gut	gut	gut	gut	gut	bedingt	2
	Typ R	1100 °C *	gut	gut	gut	gut	gut	bedingt	2
	Тур В	1100 °C*	gut	gut	gut	gut	gut	bedingt	3
Pt10%Rh	Typ S	1300 °C*	gut	gut	bedingt	bedingt	bedingt	bedingt	2
	Typ R	1300 °C *	gut	gut	bedingt	bedingt	bedingt	bedingt	2
	Тур В	1300 °C *	gut	gut	bedingt	bedingt	bedingt	bedingt	3

^{*} Maximal empfohlene Dauertemperatur 900 °C wegen des Driftverhaltens bei höheren Temperaturen

Einsatz

Bei Einsatz von Edelmetall-Thermoelementen ist zu beachten, daß der Isolationswiderstand der verwendeten Isolierkeramik bei höheren Temperaturen (über 1000 °C) stark abfällt. Wenn größere Längen des Mantelmaterials hohen Temperaturen ausgesetzt sind, kann es zu Meßfehlern durch Mittelwertbildung über die Einbaulänge kommen.

Standardausführung

Standardmäßig werden Mantelleitungen mit 2.4816-Mantel in Typ S mit Durchmesser 1,5 mm und 3,0 mm und in Typ R mit Durchmesser 1,6 mm und 3,2 mm geführt.

Produ	ıktnı	ımm	ern

S 1.5	2.4816	7960435
S 3.0	2.4816	7960436
R 1.6	2.4816	7960456
R 3.2	2.4816	7960463

Mantelleitungen mit Pt10%Rh-Mantel sind in Typ S mit Durchmesser 1,5 mm und 3,0 mm und in Typ R in 1,6 mm ab Lager lieferbar.

Produktnummern

S 1.5	Pt10%Rh	7960445
S 3.0	Pt10%Rh	7960446
R 1.6	Pt10%Rh	7960459

Sonderausführung

Sonderausführungen sind in anderen Abmessungen auf Anfrage jederzeit möglich. Es können auch Mäntel mit anderer Platin-Rhodium-Zusammensetzung gefertigt werden.

Die minimale Fertigungslänge ist 1,5 m.

Über die maximalen Fertigungslängen der gängigsten Abmessungen gibt die nachfolgende Tabelle eine Übersicht. Größere Längen sind in Sonderfällen auf Anfrage möglich.

Maximale Fertigungslängen											
Mantel	TP	Ø 1,0 mm	Ø 1,5 mm	Ø 1,6 mm	Ø 2,0 mm	Ø 3,0 mm	Ø 3,2 mm	Ø 4,5 mm	Ø 4,8 mm	Ø 6,0 mm	Ø 6,4 mm
Pt10%Rh	1 × S	20 m	20 m	18 m	9 m	6 m	5 m	6 m	5 m	3 m	
	2×S	20 m	20 m	18 m	9 m	6 m	5 m	6 m	5 m	3 m	
	1×R	20 m	20 m	18 m	9 m	6 m	5 m	6 m	5 m	3 m	
	$2 \times R$	20 m	20 m	18 m	9 m	6 m	5 m	6 m	5 m	3 m	
2.4816	1 × S	35 m	310 m	265 m	155 m	90 m	80 m	18 m	7 m	10 m	8,5 m
	2 × S		14 m	265 m	155 m	90 m	80 m	18 m	7 m	10 m	8,5 m
	1×R	35 m	14 m	265 m	155 m	90 m	80 m	18 m	7 m	10 m	8,5 m
	2×R		14 m	265 m	155 m	90 m	80 m	18 m	7 m	10 m	8,5 m

SensyHeat - Heizleitungen

SensyHeat - Heizleitungen zur Temperaturstabilisierung und -anhebung

SensyHeat mineralisolierte Heizleitungen sind elektrische Beheizungssysteme mit hohem Wirtschaftlichkeitsgrad (spezifische Heizleistung bis 300 W/m) und Einsatzmöglichkeit bei hohen Temperaturen (auch im Ex-Bereich). Sie werden überall dort eingesetzt, wo Heizleitungen aus Kunststoff nicht mehr geeignet sind. Sie sind durch ihre hohe Belastbarkeit pro m zur Übertragung großer Wärmemengen geeignet.

Bevorzugte Einsatzbereiche sind der Maschinen- und Anlagenbau, Chemie, Petrochemie sowie Forschung und Entwicklung.

Heizleiter-Material	Mantel-Material	Einsetzbar bei Temperaturen bis
NiCr-Legierung	2.4816	800 °C
CuNi-Legierung	1.4541	500 °C

Adern NiCr 8020, ei	nsetzbar bis 800 °C			
Außen ∅ mm	Widerstand bei 20 °C Ω/m	Adern Ø mm	Wandstärke mm	Länge m
3,2	10,00	0,38	0,34	100
3,2	6,30	0,48	0,34	360
3,2	4,00	0,61	0,34	360
3,6	2,50	0,77	0,38	270
3,8	1,60	0,96	0,40	240
4,1	1,00	1,21	0,43	200
4,5	0,63	1,52	0,48	170
5,0	0,40	1,91	0,53	140
5,6	0,25	2,42	0,59	110
6,5	0,16	3,03	0,69	80
Adern CuNi, einsetz	bar bis 500 °C			
3,5	1,3	0,70	0,37	280
3,7	0,8	0,88	0,39	250
4,0	0,5	1,12	0,42	220
4,4	0,3	1,44	0,47	180
4,9	0,2	1,77	0,52	150
5,8	0,1	2,50	0,61	100

Toleranz für den Meterwiderstand: ± 10 %

Toleranz für den Außendurchmesser: nach DIN EN 61515

Um eine ausreichende Spannungsfestigkeit zwischen Ader und Mantel sicherzustellen, beträgt bei allen Typen dieses Programms die Isolations-Stärke 1,0 mm. Somit ist ein Einsatz bis zu einer Betriebsspannung von 800 V gewährleistet.