Цифровой преобразователь температуры для термопар Модель Т16.Н, исполнение для монтажа в головке Модель Т16.R, исполнение для монтажа на рейку

WIKA типовой лист TE 16.01

Применение

- Промышленное производство
- Машиностроение и энергетическое строительство

Особенности

- Для работы со всеми стандартными термопарами
- Высокая точность
- Установка параметров с помощью конфигурационного программного обеспечения WIKAsoft-TT и электрическое подключение с помощью быстроразъемного соединителя magWIK
- Имеется также доступ к соединительным клеммам снаружи
- Электромагнитная совместимость в соответствии с новейшим стандартом (EN 61326-2-3:2013)

Рис. слева: Исполнение для монтажа в головке, модель T16.H

Рис. справа: Исполнение для монтажа на рейке, модель T16.R

Описание

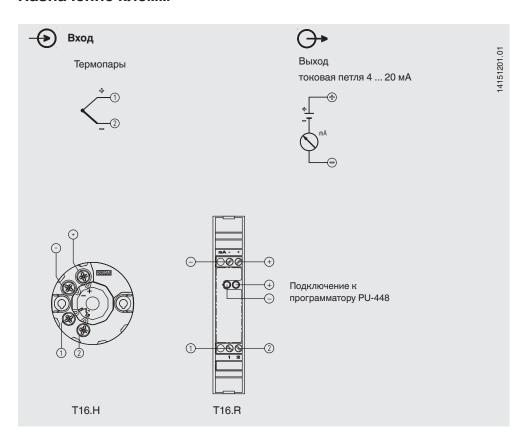
Данные температурные преобразователи предназначены для универсального использования на промышленных предприятиях и в машиностроении. Они обеспечивают высокую точность и имеют отличную защиту от электромагнитных помех (EMI). С помощью конфигурационного программного обеспечения WIKAsoft-TT и программатора модели PU-448 можно легко и быстро установить параметры преобразователей температуры модели T16.

Кроме возможности выбора типа сенсора и диапазона измерения программное обеспечение позволяет сохранять значение сигнала в аварийном режиме, демпфирование, описание нескольких точек измерения и регулировки технологического процесса.

Кроме того, программное обеспечение WIKAsoft-TT обеспечивает возможность линейной регистрации, где можно отобразить температурный профиль термопары, подключенной к преобразователю T16.

Преобразователь модели T16 выполняет различные функции контроля, такие как определение неисправности сенсора и мониторинг диапазона измерения. Кроме того, данные преобразователи обладают функцией периодического самоконтроля.

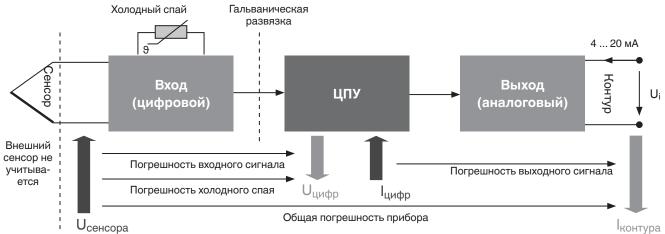
Технические характеристики


Питание	
Напряжение питания U _B	10 35 В пост. тока
Нагрузка R _A	$R_A \le (U_B - 10 B) / 0.0215 A c R_A в Омах и U_B в Вольтах$
Параметры соединений для опасных зон	см. "Относящиеся к безопасности характеристики (взрывобезопасное исполнение)"

Нагрузочная диаграмма

Допустимая нагрузка зависит от напряжения питания контура.

Назначение клемм


Вход температурного преобразователя			
Тип термопары	Макс. конфигурируемый диапазон измерения (MR)	Стандарт	Мин. шкала (MS)
J	-210 +1200 °C (-346 +2192 °F)	IEC 60584-1	50 K
K	-270 +1300 °C (-454 +2372 °F)	IEC 60584-1	50 K
В	0 1820 °C (32 3308 °F)	IEC 60584-1	200 K
N	-270 +1300 °C (-454 +2372 °F)	IEC 60584-1	50 K
R	-50 +1768 °C (-58 +3214.4 °F)	IEC 60584-1	150 K
С	-50 +1768 °C (-58 +3214.4 °F)	IEC 60584-1	150 K
T	-270 +400 °C (-454 +752 °F)	IEC 60584-1	50 K
E	-270 +1000 °C (-454 +1832 °F)	IEC 60584-1	50 K
С	0 2315 °C (32 4199 °F)	IEC 60584-1	150 K
Α	0 2500 °C (32 4532 °F)	IEC 60584-1	150 K
L	-200 +900 °C (-328 +1652 °F)	DIN 43710	50 K
L в соответствии с ГОСТ Р 8.585-2001	-200 +800 °C (-328 +1472 °F)	FOCT P 8.585-2001	50 K

Заводская конфигурация	
Сенсор	Тип К
Диапазон измерения	0 600 °C
Сигнал в аварийном режиме	Нижний предел шкалы
Демпфирование	Выключено

Аналоговый выходной сигнал, предельные значения выходного сигнала, выходной сигнал в аварийном режиме			
Аналоговый выходной сигнал, конфигурируемый	Линейная зависимость от темпер 43710	атуры в соответствии с IEC 60584/DIN	
Предельные значения выходного сигнала в соответствии с NAMUR NE43	Нижнее предельное значение 3.8 мА	Верхнее предельное значение 20.5 мА	
Величина токового выхода в аварийном режиме, конфигурируемая в соответствии с NAMUR NE43	Нижний предел шкалы < 3.6 мA (3.5 мA)	Верхний предел шкалы > 21.0 мA (21.5 мA)	

Время отклика	
Время внлючения (время, необходимое для получения первого измеренного значения)	Макс. 4 с
Время выхода на режим	По истечении макс. 45 минут достигается точность, заявленная в технических характеристиках (из-за внутреннего холодного спая)
Время установления показаний	< 0.7 c
Демпфирование	Конфигурируется от 1 с до 60 с
Типовая скорость измерения	Измеренное значение обновляется приблизительно один раз за каждые 8 с

Заявленная в технических характеристиках точность

Заявленная в технических характеристиках точность конкретного изделия относится ко всему прибору в целом. (Погрешность $_{\text{общая}} = \text{Погрешность}_{\text{вх. сигн.}} + \text{Погрешность}_{\text{холодного спая}} + \text{Погрешность}_{\text{вых. сигн.}})$

Для определения общей погрешности необходимо учесть все типы погрешности. Они приведены в следующей таблице.

Особенности			
Нормальные условия эксплуатации	Температура калибровки $T_{ref} = 23~{\rm C}$ Напряжение питания $U_{i_ref} = 24~{\rm B}$ Атмосферное давление = $860~{\rm}~1060$ Все заявленные в технических хараных условий эксплуатации.		ивы для нормаль
Заявленная в технических характеристиках точность	Погрешность измерения входного сигнала в соответствии с DIN EN 60770, NE145 1)	Усредненный температурный коэффициент (ТС); отклонение от T _{ref} на каждые 10 К температуры окружающей среды	Долговременный дрейф согласно IEC 61298-2 в год
J	≤ 0 °C: 0.45 K + 0.3 % IMVI ≥ 0 °C: 0.45 K + 0.045 % MV	±0.2 К 40 мк MV	
К	≤ 0 °C: 0.6 K + 0.3 % IMVI ≥ 0 °C: 0.6 K + 0.06 % MV		(выбирается наибольшее)
В	≤ 1000 °C: 2.5 K + 0.3 % IMV - 1000l ≥ 1000 °C: 2.5 K	1,000	
N	≤ 0 °C: 0.75 K + 0.3 % IMVI ≥ 0 °C: 0.75 K + 0.045 % MV		
R	≤ 400 °C: 2.2 K + 0.18 % IMVI ≥ 400 °C: 2.2 K + 0.015 % MV		
С	≤ 400 °C: 2.2 K + 0.18 % IMVI ≥ 400 °C: 2.2 K + 0.015 % MV		
Т	≤ 0 °C: 0.6 K + 0.3 % IMVI ≥ 0 °C: 0.6 K + 0.015 % MV		
Е	≤ 0 °C: 0.45 K + 0.3 % IMVI ≥ 0 °C: 0.45 K + 0.045 % MV		
С	≤ 1000 °C: 2.2 K + 0 % IMVI ≥ 1000 °C: 2.2 K + 0.175 % MV - 1,000		
Α	≤ 1000 °C: 2.4 K + 0 % IMVI ≥ 1000 °C: 2.4 K + 0.175 % MV - 1,000		
L	≤ 0 °C: 0.45 K + 0.15 % IMVI ≥ 0 °C: 0.45 K + 0.045 % MV		
L в соответствии с ГОСТ Р 8.585 - 2001	≤ 0 °C: 0.45 K + 0.15 % IMVI ≥ 0 °C: 0.45 K + 0.045 % MV		
Холодный спай	≤±1.5 K	±2.0 K	≤ 0.4 K
Погрешность изм. выхода (ЦАП)	0.045 % от MS	0.06 % ot MS	0.1 % от MS
Влияние источника питания, отклонение каждого 1 В напряжения питания от U _{i_ref}	±0.005 % от MS		

MV = измеренное значение

MS = шкала

¹⁾ При наличии помех, вызванных высокочастотными электромагнитными полями в диапазоне частот от 80 до 400 МГц, можно ожидать увеличение отклонения измеренного значения до 0.8 %. Следует учитывать, что при переходных процессах (например,выбросы, скачки напряжения, электростатический разряд) увеличивается отклонение измеренного значения до 1.5 %.

Примеры вычисления погрешности преобразователя

Пример 1

Термопара типа К Диапазон измерения 0 ... 400 °C → шкала 400 К Температура окружающей среды 25 °C Измеренное значение 300 °C Входной сигнал ±0.78 K 300 °C > 0 °C \rightarrow 0.6 K + 0.06 % x MV 0.6 K + (0.06 % x 300 °C) Выходной сигнал ±0.135 K 0.045 % x 300 K Холодный спай ±1.5 K 1.5 K Погрешность измерения (типовое значение) ±1.7 K $\sqrt{\text{вход}^2 + \text{выход}^2 + \text{холодный спай}^2}$ ±2.42 K Погрешность измерения (максимальное значение) $\mathsf{Bxod} + \mathsf{TC}_{\mathsf{Bxod}} + \mathsf{выxod} + \mathsf{xoлodhый}$ спай

Пример 2

Термопара типа К Диапазон измерения 0 600 °C → шкала 600 К Температура окружающей среды 45 °C Измеренное значение 550 °C		
Входной сигнал 550 °C > 0 °C → 0.6 K + 0.06 % x MV 0.6 K + (0.06 % x 550 °C)	±0.93 K	
Температурный коэффициент входа $45 ^{\circ}\text{C} - 26 ^{\circ}\text{C} = 9 \text{K} \rightarrow 2 \text{x} 10 \text{K}$	±0.4 K	
Выходной сигнал 0.045 % x 600 K	± 0.27 K	
Температурный коэффициент выхода 45°C - 26°C = 19K → 2x 10 K 0.06°x 600 K x 2	±0.72 K	
Холодный спай 1.5 K	±1.5 K	
Температурный коэффициент холодного спая 45°C - 26°C = 19K → 2x 10K	±4.0 K	
Погрешность измерения (типовое значение) $\sqrt{\text{вход}^2 + \text{TC}_{\text{вход}}^2 + \text{выход}^2 + \text{TC}_{\text{выход}}^2 + \text{холодный}}$ спай ² + $\frac{1}{\text{спай}^2 + \text{TC}_{\text{холодный спай}^2}}$	±4.5 K	
Погрешность измерения (максимальное значение) Вход + TC _{вход} + выход + холодный спай	±7.8 K	

Контроль	
Мониторинг неисправности сенсора	Конфигурируется с помощью программного обеспечения По умолчанию: Нижний предел шкалы
Мониторинг диапазона измерения	Мониторинг установленного диапазона измерения для верхнего/ нижнего значений отклонения, конфигурируется По умолчанию: неактивен
Отставание показаний (внутренняя температура электронного модуля)	Сохранение в памяти максимального значения температуры окружающей среды (сброс невозможен)

Корпус	T16.Н исполнение для монтажа в головке	T16.R исполнение для монтажа на рейке
Материал	Пластик ПБТ, армированный стекловолокном	Пластмасса
Macca	Приблизительно 50 г	Приблизительно 0.2 кг
Пылевлагозащита	IP00 (электронный блок полностью герметизирован)	IP20
Клеммы, невыпадающие винты, сечение проводников ■ Одножильный провод ■ Многожильный провод, оконцованный	0.14 2.5 мм² (24 14 AWG) 0.14 1.5 мм² (24 16 AWG)	0.14 2.5 мм² (24 14 AWG) 0.14 2.5 мм² (24 14 AWG)
Рекомендуемая для использования отвертка	Под крестообразный шлиц (наконечник 'Pozidrive'), размер 2 (ISO 8764)	Шлицевая, 3 x 0.5 мм (ISO 2380)
Рекомендуемый крутящий момент	0.5 Нм	0.5 Нм

Параметры окружающей среды	
Допустимый диапазон температуры окружающей среды	{-50} -40 +85 {+105} °C {-58} -40 +185 {+221} °F
Климатический класс в соответствии с IEC 654-1:1993	Cx (-40 +85 °C, 5 95 % относит. влажности)
Мансимальная допустимая влажность ■ Модель Т16.Н в соответствии с IEC 60068-2-38:2009 ■ Модель Т16.R в соответствии с IEC 60068-2-30:2005	Макс. отклонение температуры при испытаниях 65 °C / -10 °C, 93 % ±3 % относит. влажности Макс. температура при испытаниях 55 °C, 95 % относит. влажности
Виброустойчивость в соответствии с IEC 60068-2-6:2008	Диапазон частот: 10 2000 Гц; 10g, амплитуда 0.75 мм
Ударопрочность в соответствии с IEC 68-2-27:2009	Ускорение / ширина фронта ударной волны Модель Т16.H: 100 g / 6 мс Модель Т16.R: 30 g / 11 мс
Соляной туман в соответствии с IEC 68-2-52:1996, IEC 60068-2-52:1996	Уровень 1
Конденсация	Модель T16.H: допустима Модель T16.R: допустима в вертикальном монтажном положении
Свободное падение с соответствии с IEC 60721-3-2:1997, DIN EN 60721-3-2:1998	Высота падения 1.5 м
Электромагнитная совместимость (ЭМС) ¹⁾ в соответствии с DIN EN 55011:2010, DIN EN 61326-2-3:2013, NAMUR NE21:2012, GL 2012 VI Часть 7	Излучение (группа 1, класс В) и помехоустойчивость (промышленное применение) [Высокочастотное поле, высокочастотный кабель, электростатический разряд, броски, скачки напряжения]

^() Позиции со значениями параметров в фигурных скобках являются дополнительными и поставляются за дополнительную плату, кроме исполнения АТЕХ для модели Т16.R с монтажом в головке и модели Т16.R с монтажом на рейке

Характеристики, относящиеся к безопасности (взрывобезопасное исполнение)

■ Модели Т16.x-AI, Т16.x-AC

Значения для искробезопасного подключения токовой петли (4 ... 20 мА)

Уровень защиты Ex ia IIC/IIB/IIA, Ex ia IIIC или Ex ic IIC/IIB/IIA

Параметры	Модели Т16.x-AI, Т16.x-AC	Модели Т16.x-AI
	Опасные газы	Опасная пыль
Клеммы	+/-	+/-
Напряжение U _i	30 В пост. тока	30 В пост. тока
Ток I _i	130 мА	130 мА
Мощность P _i	800 мВт	750/650/550 мВт
Эффективная внутренняя емкость C _i	18.4 нФ	18.4 нФ
Эффективная внутренняя индуктивность L _i	800 мкГн	800 мкГн

Контур сенсора

Параметры	Модели Т16.x-Al	Модель T16.x-AC
	Ex ia IIC/IIB//IIA Ex ia IIIC	Ex ic IIC/IIB//IIA
Клеммы	1 - 2	
Напряжение U _o	6.6 В пост. тока	
Ток I _o	4 mA	
Мощность P _o	10 мВт	
Характеристика	Линейная	

¹⁾ В случае помех, вызванных высокочастотными электромагнитными полями в диапазоне частот от 80 до 400 МГц, можно ожидать увеличения отклонения измеренного значения до 0.8 %. Следует учитывать, что при переходных процессах (например, выбросы, скачки, электростатический разряд) увеличивается отклонение измеренного значения до 1.5 %.

Из-за требований к расстояниям, предъявляемым соответствующими стандартами, необходимо учитывать искробезопасное значение мощности и отсутствие гальванической развязки между сигнальным контуром и искробезопасным контуром сенсора.

Искробезопасный контур питания и сигнальный контур, а также искробезопасный контур сенсора следует считать гальванически связанными друг с другом (с точки зрения взрывозащиты).

Диапазон температур окружающей среды

Применение	Диапазон температур окружающей среды	Температурный нласс	Мощность P _i
Группа II	$-40 ^{\circ}\text{C} \le T_a \le +85 ^{\circ}\text{C}$	T4	800 мВт
	$-40 ^{\circ}\text{C} \le T_a \le +70 ^{\circ}\text{C}$	T5	800 мВт
	-40 °C ≤ T _a ≤ +55 °C	T6	800 мВт
Группа IIIC	$-40 ^{\circ}\text{C} \le T_a \le +40 ^{\circ}\text{C}$	N/A	750 мВт
	-40 °C ≤ T_a ≤ $+75$ °C	N/A	650 мВт
	$-40~^{\circ}\text{C} \le T_a \le +100~^{\circ}\text{C}$	N/A	550 мВт

N / A = не применимо

Комментарии:

 ${\sf U_o}$: Максимальное напряжение любого проводника относительно трех других проводников

I₀: Максимальный выходной ток наименее предпочительного соединения внутренних ограничивающих ток резисторов

Р_о: Значеие U_o x I_o, деленное на 4 (линейная характеристика)

■ Модели T16.x-AN, T16.x-AE

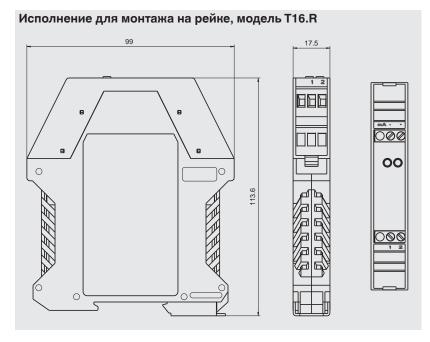
Силовой и сигнальный контуры (токовая петля 4 ... 20 мА)

Уровень защиты Ex nA IIC/IIB/IIA

Параметры	Модели T16.x-AN, T16.x-AE
	Опасные газы
Клеммы	+/-
Напряжение U _i	35 В пост. тока
Ток I _i	21.5 mA

Контур сенсора

Уровень защиты Ex nA IIC/IIB/IIA


Параметры	Модели T16.x-AN, T16.x-AE
Клеммы	1 - 2
Мощность P _o	2.575 B x 0.1 мA → 0.256 мВт 2.575 В пост. тока 0.1 мA

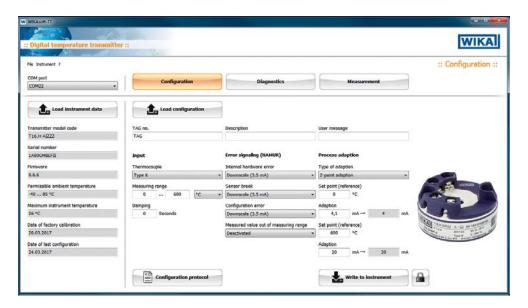
Диапазон температур окружающей среды

Применение	Диапазон температур окружающей среды	Температурный класс
Группа II	$-40 ^{\circ}\text{C} \le T_a \le +85 ^{\circ}\text{C}$	T4
	$-40 ^{\circ}\text{C} \le T_a \le +70 ^{\circ}\text{C}$	T5
	$-40 ^{\circ}\text{C} \le T_a \le +55 ^{\circ}\text{C}$	T6

Размеры в мм

Размеры преобразователя, монтируемого в головку, соответствуют соединительным головкам формы В DIN с увеличенным монтажным пространством, например, модель BSZ компании WIKA.

Преобразователи во всех корпусах для монтажа на рейке подходят для всех стандартные реек в соответствии с IEC 60715.


Подключение программатора PU-448

Внимание:

Для обеспечения прямой связи через USB интерфейс ПК/ноутбука необходимо использовать программатор модели PU-448 (см. "Дополнительное оборудование").

Конфигурационное программное обеспечение WIKAsoft-TT

Дополнительное оборудование

Конфигурационное программное обеспечение WIKA:

можно бесплатно скачать с сайта www.wika.com

Модель	Описание	Код заказа
Программатор Модель PU-448	 ■ Простота использования ■ Светодиод состояния/диагностические индикаторы ■ Миниатюрная конструкция ■ Для программатора и датчика источник питания не требуется ■ 2 мм разъем типа "banana" ■ В комплект входит 1 магнитный быстроразъемный соединитель модели magWIK 	11606304
Магнитное быстроразъемное соединение magWIK	 Заменяет зажимы типа "крокодил" и клеммы HART® Быстрое, безопасное и надежное электрическое соединение Для всех процедур конфигурирования и калибровки Гнездо 2 мм Включает 2 переходника (гнездо с 2 мм на 4 мм) 	14026893
Переходник	 ■ Подходит для TS 35 в соответствии с DIN EN 60715 (DIN EN 50022) или TS 32 в соответствии с DIN EN 50035 ■ Материал: пластмасса / нержавеющая сталь ■ Размеры: 60 x 20 x 41.6 мм 	3593789

Нормативные документы

Логотип	Описание	Страна
CE	Сертификат соответствия EU ■ Директива по электромагнитной совместимости EN 61326 излучение (группа 1, класс В) и помехоустойчивость (промышленное применение) ■ Соответствие RoHS	Европейский союз
(ξx)	 ■ Соответствие ногоз ■ Директива АТЕХ (дополнительно) Опасные зоны 	
IEC TECEX	IECEx (дополнительно) Опасные зоны	Государства-члены IECEx

Информация о производителе и сертификаты

Логотип	Описание
-	Директива RoHS, Китай

Сертификаты (дополнительно)

- Протокол испытаний 2.2
- Приемочный акт 3.1

Информация о нормативных документах и сертификатах приведена на веб-сайте.

Информация для заказа

Модель / Взрывозащита / Дополнительные нормативные документы / Допустимая температура окружающей среды / Конфигурация / Сетификаты / Дополнительное оборудование

© 03/2017 WIKA Alexander Wiegand SE & Co. KG, все права защищены.
Технические характеристики, указанные в данном документе, были актуальны на момент его публикации.
Компания оставляет за собой право вносить изменения в технические характеристики и материалы своей продукции.

Страница 10 из 10

WIKA типовой лист TE 16.01 · 03/2017

