Instrucciones de servicio

Transmisor de presión de proceso IPT-2x

E

Profibus PA Celda de medida metálica

Transmisor de presión de proceso IPT-2x

Índice

1	Acerca de este documento4				
	1.1	Función			
	1.2	Grupo destinatario			
	1.3	Simbología empleada	4		
2	Para su seguridad				
	2.1	Personal autorizado			
	2.2	Uso previsto			
	2.3	Aviso contra uso incorrecto	5		
	2.4	Instrucciones generales de seguridad			
	2.5	Conformidad	6		
	2.6	Recomendaciones NAMUR			
3	Descripción del producto				
	3.1	Estructura	7		
	3.2	Principio de operación	7		
	3.3	Procedimiento de limpieza adicional	10		
	3.4	Embalaje, transporte y almacenaje	10		
4	Montaje				
	4.1	Instrucciones generales			
	4.2	Instrucciones para las aplicaciones de oxigeno			
	4.3	Ventilación y compensación de presión			
	4.4	Medición de presión de proceso	17		
	4.5	Medición de nivel	19		
	4.6	Carcasa externa	20		
5	Conectar al sistema de bus				
	5.1	Preparación de la conexión	21		
	5.2	Conexión	22		
	5.3	Carcasa de una cámara			
	5.4	Carcasa de dos cámaras	24		
	5.5	Carcasa IP66/IP68 (1 bar)			
	5.6	Carcasa externa con versión IP68 (25 bar)			
	5.7	Fase de conexión			
6	Pues	Puesta en funcionamiento con el módulo de visualización y configuración			
	6.1	Colocar el módulo de visualización y configuración			
	6.2	Sistema de configuración			
	6.3	Visualización del valor de medición	31		
	6.4	Parametrización - Función de puesta en marcha rápida	32		
	6.5	Parametrización - Ajuste ampliado			
	6.6 6.7	Sinopsis del menú			
		·			
7	Diagnóstico, asset management y servicio				
	7.1	Mantenimiento			
	7.2	Memoria de diagnóstico			
	7.3	Función Asset-Management			
	7.4	Eliminar fallos			
	7.5	Cambiar módulo de proceso con versión IP68 (25 bar)	51		
	7.6				
8	Desr	montaje	53		

Índice

8.1	Pasos de desmontaje	. 53
	Eliminar	
Anexo		54
9.1	Datos técnicos	. 54
9.2	Comunicación Profibus PA	. 71
9.3	Cálculo de la desviación total	. 75
9.4	Cálculo de la desviación total - Ejemplo práctico	. 75
9.5	Dimensiones	. 78
9.6	Marca registrada	. 88

Instrucciones de seguridad para zonas Ex:

En caso de aplicaciones Ex atender las instrucciones de seguridad específicas Ex. Las mismas están anexas en forma de documentación en cada instrumento con homologación Ex y forman parte del manual de instrucciones.

Estado de redacción: 2023-09-01

1 Acerca de este documento

1.1 Función

Las presentes instrucciones ofrecen la información necesaria para el montaje, la conexión y la puesta en marcha, así como importantes indicaciones para el mantenimiento, la eliminación de fallos, la seguridad y el recambio de piezas. Por ello es necesario proceder a su lectura antes de la puesta en marcha y guardarlas en todo momento al alcance de la mano en las proximidades inmediatas del equipo como parte integrante del producto.

1.2 Grupo destinatario

Este manual de instrucciones está dirigido al personal cualificado. El contenido de esta instrucción debe ser accesible para el personal cualificado y tiene que ser aplicado.

1.3 Simbología empleada

Información, indicación, consejo: Este símbolo hace referencia a información adicional útil y consejos para un trabajo exitoso.

Nota: Este símbolo hace referencia a información para prevenir fallos, averías, daños en equipos o sistemas.

Atención: El incumplimiento de las indicaciones marcadas con este símbolo puede causar daños personales.

Atención: El incumplimiento de las indicaciones marcadas con este símbolo puede causar lesiones graves o incluso la muerte.

Peligro: El incumplimiento de las indicaciones marcadas con este símbolo puede causar lesiones graves o incluso la muerte.

Aplicaciones Ex

Este símbolo caracteriza instrucciones especiales para aplicaciones Ex.

Lista

El punto precedente caracteriza una lista sin secuencia obligatoria

1 Secuencia de procedimiento

Los números precedentes caracterizan pasos de operación secuenciales.

Eliminación

Este símbolo caracteriza instrucciones especiales para la eliminación

2 Para su seguridad

2.1 Personal autorizado

Todas las operaciones descritas en esta documentación tienen que ser realizadas exclusivamente por personal cualificado y autorizado.

Durante los trabajos en y con el dispositivo siempre es necesario el uso del equipo de protección necesario.

2.2 Uso previsto

IPT-2x es un transmisor de presión para la medición de presión de proceso y de nivel hidrostático.

Informaciones detalladas sobre el campo de aplicación se encuentran en el capítulo " *Descripción del producto*".

La seguridad del funcionamiento del instrumento está dada solo en caso de un uso previsto según las especificaciones del manual de instrucciones, así como según como las instrucciones complementarias que pudiera haber.

2.3 Aviso contra uso incorrecto

En caso de un uso inadecuado o no previsto de este equipo, es posible que del mismo se deriven riegos específicos de cada aplicación, por ejemplo un rebose del depósito debido a un mal montaje o mala configuración. Esto puede tener como consecuencia daños materiales, personales o medioambientales. También pueden resultar afectadas las propiedades de protección del equipo.

2.4 Instrucciones generales de seguridad

El equipo se corresponde con el nivel del desarrollo técnico bajo consideración de las prescripciones y directivas corrientes. Solo se permite la operación del mismo en un estado técnico impecable y seguro. La empresa operadora es responsable de una operación sin fallos del equipo. En caso de un empleo en medios agresivos o corrosivos en los que un mal funcionamiento del equipo puede dar lugar a posibles riesgos, la empresa operadora tiene que asegurarse de la corrección del funcionamiento por medio de medidas apropiadas.

Hay que observar las indicaciones de seguridad de este manual de instrucciones, las normas de instalación específicas del país y las normas de seguridad y de prevención de accidentes vigentes.

Por razones de seguridad y de garantía, toda manipulación que vaya más allá de lo descrito en el manual de instrucciones tiene que ser llevada a cabo exclusivamente por parte de personal autorizado por nosotros. Están prohibidas explícitamente las remodelaciones o los cambios realizados por cuenta propia. Por razones de seguridad, solo se permite el empleo de los accesorios mencionados por nosotros.

Para evitar posibles riesgos, hay que atender a los símbolos e indicaciones de seguridad puestos en el equipo.

2.5 Conformidad

El equipo cumple los requisitos legales de las directivas o reglamentos técnicos específicos de cada país. Certificamos la conformidad con la marca correspondiente.

Las declaraciones de conformidad correspondientes están en nuestra página web.

Debido a la estructura de sus conexiones a proceso, el equipo no está sujeto a la Directiva sobre equipos a presión cuando se opera con presiones de proceso ≤ 200 bar. ¹)

2.6 Recomendaciones NAMUR

NAMUR es la sociedad de intereses técnica de automatización en la industria de procesos en Alemania. Las recomendaciones NAMUR editadas se aplican en calidad de estándar en la instrumentación de campo.

El equipo cumple las requisitos de las recomendaciones NAMUR siguientes:

- NE 21 Compatibilidad electromagnética de medios de producción ²⁾
- NE 53 Compatibilidad con equipos de campo y componentes de indicación y ajuste
- NE 107 Autovigilancia y diagnóstico de equipos de campo

Para otras informaciones ver www.namur.de.

¹⁾ Excepción: versiones con rangos de medición a partir de 250 bar. Éstas están sujetas a la Directiva sobre equipos a presión de la UE.

²⁾ No se cumple en caso de que se conecte una unidad visualización y configuración externa.

3 Descripción del producto

3.1 Estructura

Material suministrado

El material suministrado incluye:

Equipo IPT-2x

El resto del material suministrado comprende:

- Documentación
 - Guía rápida IPT-2x
 - Certificado de control para el transmisor de presión
 - Instrucciones para equipamientos opcionales
 - "Instrucciones de seguridad" especificas EX (para versiones Ex)
 - Otras certificaciones en caso necesario

Información:

En el manual de instrucciones también se describen las características técnicas, opcionales del equipo. El volumen de suministro correspondiente depende de la especificación del pedido.

Placa de tipos

La placa de caracteristicas contiene los datos más importantes para la identificación y empleo del instrumento.

- Tipo de instrumento
- Información sobre aprobaciones
- Informaciones para la configuración
- Datos técnicos
- Número de serie de los equipos
- Código QR para la identificación del equipo
- Información del fabricante

Documentos y software

Para más información ver nuestra página web.

Allí encontrará la documentación e información adicional sobre el dispositivo.

3.2 Principio de operación

Rango de aplicación

IPT-2x es adecuado para aplicaciones en casi todos los sectores industriales. Se emplea para la medición de los siguientes tipos de presión.

- Sobrepresión
- Presión absoluta
- Vacío

Productos a medir

Medios de medición son gases, vapores y líquidos.

El equipo ha sido previsto especialmente para aplicaciones con altas temperaturas y altas presiones.

Magnitudes de medición

El IPT-2x es adecuado para la medición de las variables de proceso siguientes:

- Presión de proceso
- Nivel

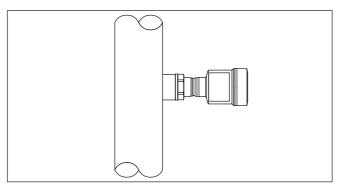


Fig. 1: Medición de presión de proceso con IPT-2x

Sistema de medición

La presión del proceso actúa sobre elemento sensor a través de la membrana de proceso. Esta provoca allí una variación de resistencia, que se transforma en una señal de salida correspondiente y se emite como valor de medición.

Elemento sensor piezorresistivo

Para rangos de medición hasta 40 bar se emplea un elemento sensor piezorresistivo con fluido de separador interno.

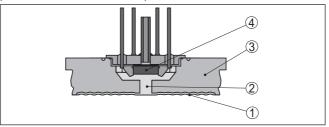


Fig. 2: Estructura del sistema de medición con elemento sensor piezorresistivo

- 1 Membrana
- 2 Líquido separador
- 3 Cuerpo básico
- 4 Elemento sensor

Elemento sensor de galga extensométrica (DMS)

Para rangos de medición a partir de 100 bar se emplea un elemento sensor con galga extensométrica (DMS) (Sistema seco).

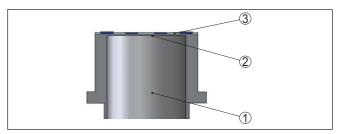


Fig. 3: Estructura del sistema de medición con elemento sensor extensométrico (DMS)

- 1 Cilindro de presión
- 2 Membrana de proceso
- 3 Elemento sensor

Temperatura sistema de medición

Un sensor de temperatura en el elemento sensor de presión correspondiente registra la temperatura de proceso actual. El valor de temperatura se entrega por ejemplo a través del módulo de visualización y configuración.

Celda de medida cerámica/metálica

Para rangos de medición ≤ 400 mbar y rangos de temperatura más altos, la unidad de medición es la celda de medición cerámica/metálica. Ésta se compone de la celda de medición cerámica-capacitiva y un sistema de aislamiento especial con compensación de temperatura.

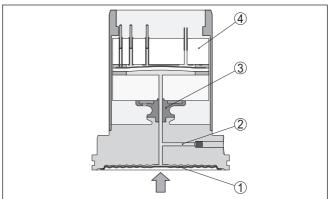


Fig. 4: Estructura de la celda de medida

- 1 Membrana de proceso
- 2 Líquido separador
- 3 Adaptador FeNi
- 4 Celda de medida cerámico-capacitiva

Temperatura sistema de medición

Sensores de temperatura en la membrana cerámica y en el cuerpo básico de cerámica de la celda de medida cerámica registran la temperatura actual del proceso. El valor de temperatura se entrega por ejemplo a través del módulo de visualización y configuración.

Tipos de presión

La celda de medición está construida de modo diferente en función del tipo de presión

Presión relativa: la celda de medida está abierta hacia la atmósfera. La presión ambiental es detectada por la celda de medida y compensada. Por eso la misma no afecta en forma alguna el valor de medición.

Presión absoluta: la celda de medida contiene vacío y está encapsulada. La presión ambiental no es compensada y afecta de esta forma al valor de medición.

Concepto de hermetización

El sistema de medición está completamente soldado y por tanto sellado contra el proceso.

El sellado de la conexión de proceso contra el proceso se realiza mediante una junta adecuada. Este debe ser suministrado por el cliente, dependiendo de la conexión a proceso también se incluye en el alcance de suministro, véase el capítulo " Datos técnicos", " Materiales y pesos".

3.3 Procedimiento de limpieza adicional

El IPT-2x está disponible también en la versión " Libre de aceite, grasa y silicona". Esos equipos han sido sometidos a un proceso de limpieza especial para la eliminación de aceites, grasas y otras sustancias que impiden la humidificación de lacas

La limpieza se realiza en todas las piezas en contacto con el proceso así como en las superficies accesibles desde el exterior. Para mantener el grado de pureza se realiza un embalaje cuidadoso en película plástica después del proceso de limpieza. El grado de pureza se conserva mientras el instrumento se mantenga en el embalaje original.

Cuidado:

El IPT-2x no se puede emplear en esta versión en aplicaciones de oxigeno. Para ello hay disponibles equipos de modelos especiales " Libre de aceite, de grasa y de silicona para para aplicaciones de oxigeno".

3.4 Embalaje, transporte y almacenaje

Embalaje

Su equipo está protegido por un embalaje durante el transporte hasta el lugar de empleo. Aquí las solicitaciones normales a causa del transporte están aseguradas mediante un control basándose en la norma DIN EN 24180.

El embalaje exterior es de cartón, compatible con el medio ambiente y reciclable. En el caso de versiones especiales se emplea adicionalmente espuma o película de PE. Deseche los desperdicios de material de embalaje a través de empresas especializadas en reciclaje.

Transporte

Hay que realizar el transporte, considerando las instrucciones en el embalaje de transporte. La falta de atención puede tener como consecuencia daños en el equipo.

Inspección de transporte

Durante la recepción hay que comprobar inmediatamente la integridad del alcance de suministros y daños de transporte eventuales. Hay que tratar correspondientemente los daños de transporte o los vicios ocultos determinados.

Almacenaje

Hay que mantener los paquetes cerrados hasta el montaje, y almacenados de acuerdo de las marcas de colocación y almacenaje puestas en el exterior.

Almacenar los paquetes solamente bajo esas condiciones, siempre y cuando no se indique otra cosa:

- No mantener a la intemperie
- Almacenar seco y libre de polvo
- No exponer a ningún medio agresivo
- Proteger de los rayos solares
- Evitar vibraciones mecánicas

Temperatura de almacenaje y transporte

- Temperatura de almacenaje y transporte ver " Anexo Datos técnicos - Condiciones ambientales"
- Humedad relativa del aire 20 ... 85 %

Levantar y transportar

Para elevar y transportar equipos con un peso de más de 18 kg (39.68 lbs) hay que servirse de dispositivos apropiados y homologados.

4 Montaje

4.1 Instrucciones generales

Condiciones de proceso

Indicaciones:

El dispositivo debe ser operado por razones de seguridad sólo dentro de las condiciones de proceso permisibles. Las especificaciones respectivas se encuentran en el capítulo " *Datos técnicos*" del manual de instrucciones o en la placa de tipos.

Asegurar antes del montaje, que todas las partes del equipo que se encuentran en el proceso, sean adecuadas para las condiciones de proceso existentes.

Estos son principalmente:

- Pieza de medición activa
- Conexión a proceso
- Junta del proceso

Condiciones de proceso son especialmente

- Presión de proceso
- Temperatura de proceso
- Propiedades químicas de los productos
- Abrasión e influencias mecánicas

Protección contra humedad

Proteja su instrumento a través de las medidas siguientes contra la penetración de humedad:

- Emplear un cable de conexión apropiado (ver capitulo " Conectar a la alimentación de tensión")
- Apretar firmemente el prensaestopas o el conector enchufable
- Conducir hacia abajo el cable de conexión antes del prensaestopas o del conector enchufable

Esto vale sobre todo para el montaje al aire libre, en recintos en los que cabe esperar la presencia de humedad (p.ej. debido a procesos de limpieza) y en depósitos refrigerados o caldeados.

Indicaciones:

Asegúrese de que durante la instalación o el mantenimiento no puede acceder ninguna humedad o suciedad al interior del equipo.

Asegúrese que la tapa de la carcasa esté cerrada y asegurada en caso necesario durante el funcionamiento para mantener el tipo de protección del equipo.

Atornillar

Los aparatos con conexión roscada se enroscan a la conexión a proceso con una llave adecuada por medio del hexágono.

Ancho de llave véase capítulo "Dimensiones".

Advertencia:

¡La carcasa o la conexión eléctrica no se deben utilizar para atornillar! El apriete puede causar daños, por ejemplo, en dependencia de la versión del aparato en el mecanismo de giro de la carcasa.

Vibraciones

Evite daños en el equipo por fuerzas laterales, p. ej por vibraciones. Por ello se recomienda proteger los equipos con conexión a proceso con rosca G½ de plástico en el lugar de empleo con un soporte apropiado de instrumento de medición.

En caso de vibraciones fuertes en los lugares de aplicación hay que usar la versión de equipo con carcasa externa. Véase el capitulo " Carcasa externa".

Presión de proceso permitida (MWP) - Aparato

El rango permitido de presión de proceso se indica con "MWP" (Maximum Working Pressure) en la placa de características, ver capítulo " *Estructura*". El MWP tiene en consideración el miembro de más baja presión de la combinación de celda de medida y de conexión a proceso y puede ser permanente. El dato se refiere a una temperatura de referencia de +20 °C (+68 °F). La especificación también se aplica cuando, de acuerdo con el pedido, se ha instalado una celda de medida con un rango de medida más alto que el rango de presión permitido de la conexión del proceso.

Además, una reducción de temperatura de la conexión a proceso, p.ej. con bridas, puede restringir el rango permitido de presión de proceso conforme a la norma correspondiente.

Indicaciones:

Para que no se produzca ningún daño en el aparato, la presión de prueba sólo puede exceder el rango MWP brevemente 1,5 veces a la temperatura de referencia. Allí están considerados los niveles de presión de la conexión de proceso y la resistencia a sobrecarga de la celda de medida (ver capítulo " *Datos técnicos*").

Cuidado:

Para equipos con rangos de medición > 1000 bar, la presión de prueba admisible es idéntica a la MWP. Para evitar daños en el equipo o en sus propiedades técnicas de medición, no se debe exceder este valor, tampoco por poco tiempo.

Presión de proceso permitida (MWP) - Accesorios de montaje El rango de presión de proceso permitido está indicado en la placa de características. Sólo se permite operar el equipo con estas presiones cuando los accesorios de montaje empleados satisfacen también esos valores. Garantice esto último por medio de los elementos apropiados, como bridas, racores para soldar, anillos tensores con conexiones Clamp, juntas, etc.

Límites de temperatura

Temperaturas de proceso de proceso elevadas equivalen también a menudo a temperaturas ambiente elevadas. Asegurar que no se excedan los límites de temperatura superiores indicados en el capítulo " *Datos técnicos*" para el entorno de la carcasa de la electrónica y el cable de conexión.

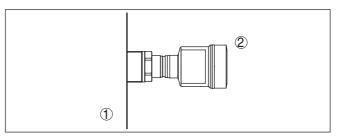


Fig. 5: Rangos de temperatura

- 1 Temperatura de proceso
- 2 Temperatura ambiente

4.2 Instrucciones para las aplicaciones de oxigeno

Advertencia:

El oxígeno, como agente oxidante, puede provocar o intensificar los incendios. Aceites, grasas, ciertos plásticos y la suciedad pueden arder explosivamente en contacto con el oxígeno. Existe riesgo de lesiones personales graves o daños materiales.

Por eso, para evitarlo, tome, entre otras, las siguientes precauciones:

- Todos los componentes de la instalación equipos de medición tienen que haber sido limpiados en conformidad con los requisitos de los estándares y normas reconocidos.
- En dependencia del material de la junta no se pueden exceder determinadas temperaturas y presiones máximas, ver capítulo " Datos técnicos"
- Los equipos de aplicación de oxígeno sólo se pueden desembalar de la película de PE inmediatamente antes del montaje.
- Comprobar si la marca "O2" es visible en la conexión de proceso después de eliminar la protección para la conexión de proceso.
- Evitar cualquier entrada de aceite, grasa y suciedad

4.3 Ventilación y compensación de presión

Elemento de filtrado - función

El elemento de filtrado dentro de la carcasa de la electrónica tiene las siguientes funciones:

- Ventilación carcasa de la electrónica
- Compensación de presión atmosférica (con rangos de presión relativa)

Cuidado:

El elemento de filtrado provoca una compensación de presión con retardo de tiempo. Por eso durante la Abertura/Cierre rápido de la tapa de la carcasa el valor medido puede modificarse hasta 15 mbar durante 5 s.

Para una ventilación efectiva, el elemento de filtrado tiene que estar siempre libre de deposiciones. Por ello, en caso de un montaje horizontal, gire la carcasa de manera que el elemento de filtrado mire

hacia abajo. De este modo está mejor protegido contra las deposiciones.

Cuidado:

No emplear ningún limpiador de alta presión para la limpieza. El elemento de filtrado se puede dañar y penetrar humedad en la carcasa.

En los capítulos siguientes se describe la disposición del elemento de filtrado en las diferentes versiones de equipos.

Elemento de filtrado posición

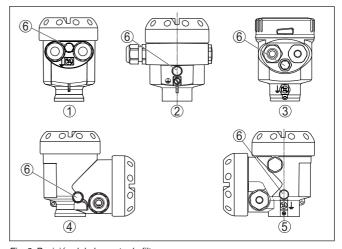


Fig. 6: Posición del elemento de filtro

- 1 Cámara única de plástico, acero inoxidable (fundición de precisión)
- 2 Aluminio de cámara única
- 3 Cámara única de acero inoxidable (electropulida)
- 4 Dos cámaras de plástico
- 5 Aluminio de cámara doble
- 6 Elemento de filtro

En los instrumentos siguientes en lugar del elemento de filtrado hay montado un tapón ciego:

- Instrumentos en grado de protección IP66/IP68 (1 bar) ventilación a través de capilares en cable con conexión fija
- Instrumentos con presión absoluta

Elemento de filtrado - posición versión Ex d

→ Girar el anillo metálico de forma tal, que el elemento de filtrado indique hacia abajo después del montaje del instrumento. De esta forma está mejor protegido contra incrustaciones.

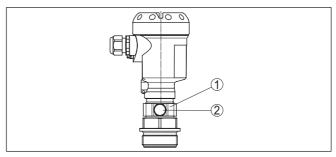


Fig. 7: Posición del elemento de filtrado - versión Ex d

- 1 Anillo metálico giratorio
- 2 Elemento de filtro

Equipos con presión absoluta tienen montado un tapón ciego en lugar del elemento de filtrado.

Elemento de filtrado posición Second Line of Defense La Second Line of Defense (SLOD) es un segundo nivel de la separación de proceso en forma de paso a prueba de gas en la garganta de la carcasa, que evita la penetración de medios en la carcasa.

En esos instrumentos el modulo de proceso está completamente encapsulado. Se emplea una celda de medición de presión absoluta, de forma tal que no hace falta ventilación.

Para rangos de medición de presión relativa la presión ambiental es detectada y compensada con un sensor de referencia en la electrónica.

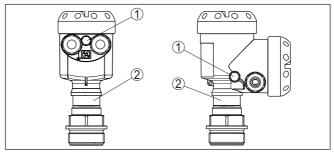


Fig. 8: Posición del elemento de filtrado - Versión hermética al gas

- 1 Elemento de filtro
- 2 Paso a prueba de gas

Elemento de filtrado - posición versión IP69K

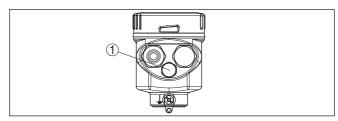


Fig. 9: Posición del elemento de filtrado - versión IP69K

1 Elemento de filtro

Equipos con presión absoluta tienen montado un tapón ciego en lugar del elemento de filtrado.

4.4 Medición de presión de proceso

Configuración de medición en gases

Atender la indicación siguiente para la configuración de medición:

Montar el equipo encima del punto de medida

De esta forma el posible condensado puede desaguar en la línea de proceso.

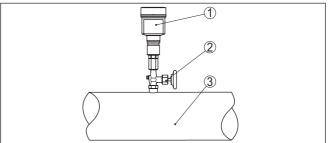


Fig. 10: Configuración de medición para la medición de presión de proceso de gases en tuberías

- 1 IPT-2x
- 2 Válvula de cierre
- 3 Tubería

Configuración de medición en vapores

Atender las indicaciones siguientes para la configuración de medición:

- Conectar a través de un sifón
- No aislar el sifón
- Llenar de agua el sifón antes de la puesta en marcha

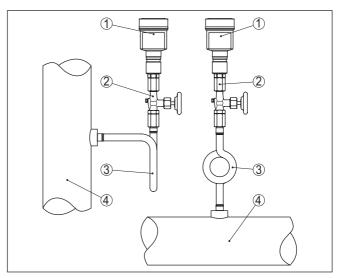


Fig. 11: Configuración de medición para la medición de presión de proceso de vapores en tuberías

- 1 IPT-2x
- 2 Válvula de cierre
- 3 Sifón en forma de U o circular
- 4 Tubería

En los codos de tubo se forma condensado y de esta forma un interceptor hidráulico protector. De esta forma se asegura una temperatura del medio < 100 °C en el convertidor de medición en las aplicaciones con vapor recalentado.

Configuración de medición en líquidos

Atender la indicación siguiente para la configuración de medición:

• Montar el equipo debajo del punto de medida

De esta forma la línea de presión efectiva siempre está llena de líquido y las burbujas de gas pueden ascender de retorno a la línea de proceso.

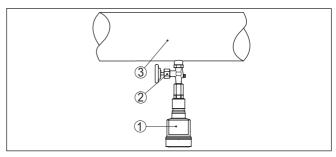


Fig. 12: Configuración de medición para la medición de presión de proceso de líquidos en tuberías

- 1 IPT-2x
- 2 Válvula de cierre
- 3 Tubería

4.5 Medición de nivel

Configuración de medición

Atender las indicaciones siguientes para la configuración de medición:

- Montar el equipo debajo del nivel mínimo
- Montar el equipo alejado de la corriente de llenado o la zona de vaciado de producto
- Montar el equipo protegido contra golpes de ariete de un agitador

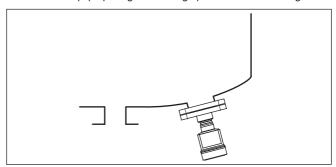


Fig. 13: Configuración de medición para la medida de nivel

4.6 Carcasa externa

Estructura

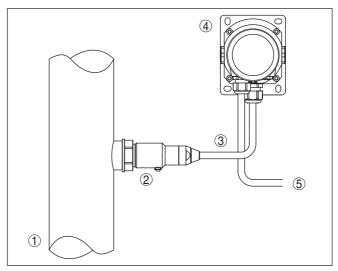


Fig. 14: Disposición módulo de proceso, carcasa externa

- 1 Tubería
- 2 Módulo de proceso
- 3 Línea de conexión módulo de proceso carcasa externa
- 4 Carcasa externa
- 5 Línea de señales

5 Conectar al sistema de bus

5.1 Preparación de la conexión

Instrucciones de seguridad

Prestar atención fundamentalmente a las instrucciones de seguridad siguientes:

- La conexión eléctrica tiene que ser realizada exclusivamente por personal cualificado y que hayan sido autorizados por el titular de la instalación
- En caso de esperarse sobrecargas de voltaje, hay que montar equipos de protección contra sobrecarga

Advertencia:

Conectar o desconectar sólo en estado libre de tensión.

Alimentación de tensión

La alimentación tensión es puesta a disposición a través de un acoplador de segmentos Profibus DP-/PA.

El rango de alimentación de tensión puede diferenciarse en dependencia de la ejecución del equipo. Los datos para la alimentación de tensión se encuentran en el capítulo " *Datos técnicos*".

Cable de conexión

La conexión se realiza con cable blindado según la especificación Profibus. La alimentación de tensión y la transmisión de la señal digital de bus se realiza a través de la misma línea de comunicación de dos hilos.

Emplear cable con sección redonda en los equipos con carcasa y prensaestopas. Controlar para qué diámetro exterior del cable es adecuado el prensaestopas con objeto de garantizar la estanqueidad del prensaestopas (tipo de protección IP).

Emplear un diámetro de cable adecuado para el prensaestopas.

Atender, que toda la instalación se realice según la especificación Profibus. Hay que prestar especialmente atención a la terminación del bus a través de las resistencia finales correspondientes.

Informaciones detalladas sobre la especificación, instalación y topología de cables están en " *Profibus PA - User and Installation Guideline*" en www.profibus.com.

Blindaje del cable y conexión a tierra

Prestar atención para que el blindaje del cable y la puesta a tierra se realicen según la especificación del bus de campo. Recomendamos conectar el blindaje del cable al potencial de tierra por ambos lados.

En el caso de instalaciones con conexión equipotencial, conectar el blindaje del cable de la fuente de alimentación, de la carcasa de conexiones y del sensor directamente al potencial de tierra. Para eso hay que conectar el blindaje del sensor directamente al terminal interno de puesta a tierra. El terminal externo de puesta a tierra de la carcasa tiene que estar conectado con baja impedancia a la conexión equipotencial.

Prensaestopas

Rosca métrica:

En carcasas del equipo con roscas métricas, los prensaestopas vienen ya enroscados de fábrica. Están cerrados con tapones de plástico para la protección durante el transporte.

•

Indicaciones:

Hay que retirar esos tapones antes de realizar la conexión eléctrica.

Rosca NPT:

En caso de carcasas con roscas autoselladoras de NPT, los prensaestopas no pueden enroscarse en fábrica. Por ello, las aperturas libres de las entradas de cables están cerradas con tapas protectoras contra el polvo de color rojo como protección para el transporte.

Indicaciones:

Es necesario sustituir esas tapas de protección por prensaestopas homologados o por tapones ciegos adecuados antes de la puesta en marcha.

Con la carcasa de plástico hay que atornillar el prensaestopas de NPT o el tubo protector de acero sin grasa en el inserto roscado.

Par máximo de apriete para todas las carcasas ver capítulo " *Datos técnicos*".

5.2 Conexión

Técnica de conexión

La conexión de la alimentación de tensión y de la salida de señal se realizan por los terminales de resorte en la carcasa.

La conexión con el módulo de visualización y configuración o con el adaptador de interface se realiza a través de las espigas de contacto en la carcasa.

Información:

El bloque de terminales es enchufable y se puede sacar de la electrónica. Con ese objetivo, subir y extraer el bloque de terminales con un destornillador pequeño. Cuando se enchufe nuevamente tiene que enclavar perceptiblemente.

Pasos de conexión

Proceder de la forma siguiente:

- Desenroscar la tapa de la carcasa
- 2. Retirar un posible módulo de visualización y configuración girando ligeramente hacia la izquierda
- Soltar la tuerca de compresión del prensaestopas y quitar el tapón
- Pelar aproximadamente 10 cm (4 in) de la envoltura del cable de conexión, quitar aproximadamente 1 cm (0.4 in) de aislamiento a los extremos de los conductores
- 5. Empujar el cable en el sensor a través del prensaestopas

Fig. 15: Pasos de conexión 5 y 6

- 1 Carcasa de una cámara
- 2 Carcasa de dos cámaras
- Conectar los extremos de los cables en los terminales según el digrama de cableado

Indicaciones:

Los conductores fijos y los conductores flexibles con virolas de cables se enchufan directamente en las aberturas de los terminales. Para conductores flexibles sin virolas de cables empujar el terminal con un destornillador pequeño, se libera la abertura del terminal. Cuando se suelta el destornillador se cierran los terminales nuevamente.

- Comprobar el asiento correcto de los conductores en los terminales tirando ligeramente de ellos
- 8. Conectar el blindaje con el terminal interno de puesta a tierra, y el terminal externo de puesta a tierra con la conexión equipotencial.
- 9. Apretar la tuerca de compresión del prensaestopas. La junta tiene que abrazar el cable completamente
- Poner nuevamente el módulo de visualización y configuración eventualmente disponible
- 11. Atornillar la tapa de la carcasa

Con ello queda establecida la conexión eléctrica.

5.3 Carcasa de una cámara

La figura siguiente se aplica para las versiones No-Ex, Ex ia y Ex d.

Compartimento de la electrónica y de conexiones

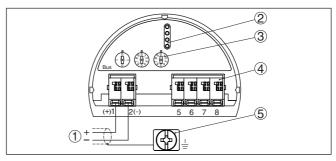


Fig. 16: Compartimento de la electrónica y de conexiones - Carcasa de una cámara

- 1 Alimentación de tensión, salida de señal
- 2 Para el módulo de visualización y configuración o adaptador de interface
- 3 Selector para la dirección del equipo
- 4 Para unidad de indicación y ajuste externa
- 5 Terminal de tierra para la conexión del blindaje del cable

5.4 Carcasa de dos cámaras

Las figuras siguientes son validas tanto para la versión No Ex como para la versión Ex ia.

Compartimiento de la electrónica

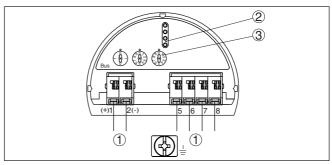


Fig. 17: Compartimiento de la electrónica - Carcasa de dos cámaras.

- 1 Conexión interna hacia el compartimento de conexión
- 2 Espigas de contacto para el módulo de visualización y configuración o adaptador de interface
- 3 Selector de la dirección de bus

Compartimiento de conexiones

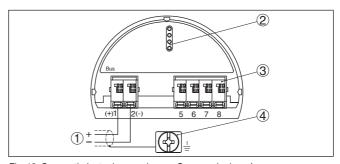


Fig. 18: Compartimiento de conexiones - Carcasa de dos cámaras

- 1 Alimentación de tensión, salida de señal
- 2 Para el módulo de visualización y configuración o adaptador de interface
- 3 Para unidad de indicación y ajuste externa
- 4 Terminal de tierra para la conexión del blindaje del cable

5.5 Carcasa IP66/IP68 (1 bar)

Ocupación de conductores del cable de conexión

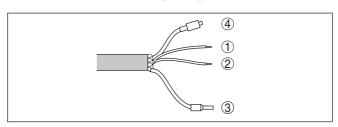


Fig. 19: Ocupación de conductores del cable de conexión

- 1 pardo (+): hacia la alimentación de tensión o hacia el sistema de evaluación
- 2 Azul (-): hacia la alimentación de tensión o hacia el sistema de evaluación
- 3 Blindaje
- 4 Capilares de compensación de presión con elemento de filtro

Resumen

5.6 Carcasa externa con versión IP68 (25 bar)

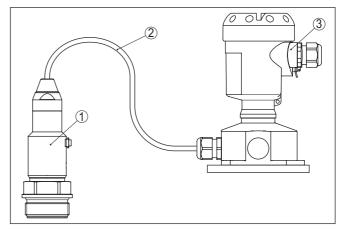


Fig. 20: IPT-2x en versión IP68 25 bar con salida de cable axial, carcasa externa

- 1 Sensor de valores medidos
- 2 Cable de conexión
- 3 Carcasa externa

Cámara de la electrónica y conexión para alimentación

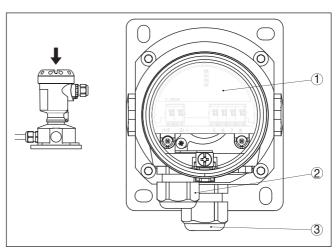


Fig. 21: Compartimento de la electrónica y de conexiones

- 1 Módulo electrónico
- 2 Prensaestopas para la alimentación de tensión
- 3 Prensaestopas para cable de conexión sensor de valores medidos

Caja de terminales zócalo de la caja

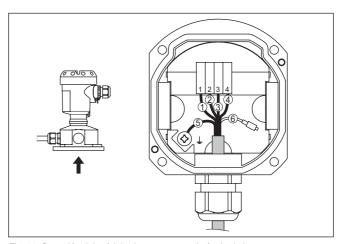


Fig. 22: Conexión del módulo de proceso en el zócalo de la carcasa

- 1 Amarillo
- 2 Blanco
- 3 Rojo
- 4 Negro
- 5 Blindaje
- 6 Capilares de compensación de presión

Compartimento de la electrónica y de conexiones

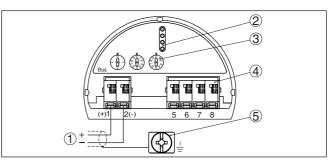


Fig. 23: Compartimento de la electrónica y de conexiones - Carcasa de una cámara

- 1 Alimentación de tensión, salida de señal
- 2 Para el módulo de visualización y configuración o adaptador de interface
- 3 Selector para la dirección del equipo
- 4 Para unidad de indicación y ajuste externa
- 5 Terminal de tierra para la conexión del blindaje del cable

5.7 Fase de conexión

Después de la conexión del equipo a la tensión de alimentación o después del regreso de la tensión, el equipo lleva a cabo una autocomprobación:

Comprobación interna de la electrónica

5 Conectar al sistema de bus

• Visualización de un aviso de estado en pantalla o PC

Después se registra el valor medido actual en la línea de señal. El valor considera los ajustes realizados previamente, p. Ej. el ajuste de fábrica

6 Puesta en funcionamiento con el módulo de visualización y configuración

6.1 Colocar el módulo de visualización y configuración

El módulo de visualización y configuración se puede montar y desmontar del sensor en cualquier momento. (Se pueden seleccionar cuatro posiciones cada una de ellas a 90° de la siguiente. Para ello no es necesario interrumpir la alimentación de tensión.

Proceder de la forma siguiente:

- 1. Desenroscar la tapa de la carcasa
- Poner el módulo de visualización y configuración sobre la electrónica, girándolo hacia la derecha hasta que encastre
- 3. Atornillar fijamente la tapa de la carcasa con la ventana.

El desmontaje tiene lugar análogamente en secuencia inversa.

El módulo de visualización y configuración es alimentado por el sensor, no se requiere ninguna conexión adicional.

Fig. 24: Empleo del módulo de visualización y configuración en carcasa de una sola cámara el compartimiento de conexión

Fig. 25: Empleo del módulo de visualización y configuración en carcasa de dos cámaras

- 1 En el compartimiento de la electrónica
- 2 En el compartimento de conexiones

Indicaciones:

En caso de que se desee reequipar el instrumento con un módulo de visualización y configuración para la indicación continua del valor medido, se necesita una tapa más alta con ventana.

6.2 Sistema de configuración

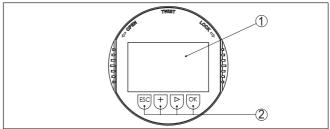


Fig. 26: Elementos de indicación y ajuste

- 1 Pantalla de cristal líquido
- 2 Teclas de configuración

Funciones de las teclas

Tecla [OK]:

- Cambiar al esquema de menús
- Confirmar el menú seleccionado
- Edición de parámetros
- Almacenar valor

• Tecla [->]:

- Cambiar representación valor medido
- Seleccionar registro de lista
- Seleccionar puntos de menú

- Seleccionar posición de edición
- Tecla [+]:
 - Modificar el valor de un parámetro
- Tecla- [ESC]:
 - Interrupción de la entrada
 - Retornar al menú de orden superior

Sistema de configuración El equipo se opera con las cuatro teclas del módulo de visualización y configuración. En la pantalla LC aparecen indicados los puntos individuales del menú. La función de la teclas individuales se pueden encontrar en la ilustración previa.

Funciones de tiempo

Pulsando una vez las teclas [+] y [->] el valor editado o el cursor cambia una posición. Cuando se pulsa la tecla por más de 1 s el cambio se produce continuamente.

La pulsación simultánea de las teclas [OK] y [ESC] por más de 5 s provocan un retorno al menú principal. Entonces el idioma del menú principal cambia al " Inglés".

Aproximadamente 60 minutos después de la última pulsación de teclas se produce una restauración automática de la indicación de valor. Durante esta operación se pierden los valores sin confirmar con **[OK]**.

Visualización del valor de medición 6.3

Visualización del valor de medición

Con la tecla [->] se puede cambiar entre tres modos de indicación diferentes.

En la primera vista aparece el valor de medición seleccionado en letras mavúsculas.

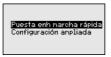
En la segunda vista aparecen representados el valor de medición seleccionado y una representación de gráfico de barras correspon-

En la tercera vista aparecen representados el valor de medición seleccionado, así como un segundo valor seleccionable p. Ej. el valor de temperatura.

Con la tecla " OK" se cambia al menú de selección " Lenguaie" durante la primera puesta en marcha del instrumento.

Selección del lenguaje

Este punto menú sirve para la selección del idioma para la ulterior parametrización.



Seleccione el idioma deseado con la tecla " [->]", con **OK**" se confirma la selección y se cambia al menú principal.

La selección realizada puede cambiarse ulteriormente en todo momento mediante el punto de menú " *Puesta en marcha - Display, idioma del menú*".

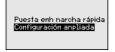
6.4 Parametrización - Función de puesta en marcha rápida

Para ajustar el sensor de forma rápida y sencilla a la tarea de medición, seleccione la opción del menú " *Puesta en marcha rápida*" en la pantalla inicial del módulo de visualización y configuración.

Seleccione cada uno de los pasos con la tecla [->].

Una vez concluido el último paso, se indica brevemente " *Puesta en marcha rápida terminada con éxito*".

El retorno a la indicación de valores medidos se efectúa mediante las teclas [->] o [ESC] o automáticamente después de 3 s


Indicaciones:

Encontrará una descripción de cada uno de los pasos en el manual de instrucciones breves del sensor.

El " Ajuste ampliado" se encuentra en el subcapítulo siguiente.

6.5 Parametrización - Ajuste ampliado

En caso de puntos de medición que requieran aplicaciones técnicas exigentes, pueden realizarse ajustes más amplios en *Ajuste ampliado*.

Menú principal

El menú principal está dividido en cinco zonas con la funcionalidad siguiente:

Puesta en marcha: Ajustes p. Ej. para el nombre del punto de medición, producto, aplicación, unidades, corrección de posición, ajuste, AI FB 1 Channel - Calibración - atenuación

Display: Ajustes p. Ej. para el idioma, indicación del valor de medición, iluminación

Diagnóstico: Informaciones p. Ej. sobre el estado del equipo, Indicador de seguimiento, seguridad de medición, simulación AI FB 1

Otros ajustes: PIN, Fecha/Hora, Reset, función de copia

Información: Nombre del equipo, versión de hardware y software, fecha de calibración, características del sensor

En el punto del menú principal " *Puesta en servicio*" se deben que seleccionar secuencialmente los puntos secundarios del menú para el ajuste óptimo de la medición, dotándolos de los parámetros correctos. La opciones del menú se describe a continuación.

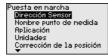
6.5.1 Puesta en marcha

Dirección del equipo

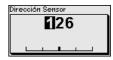
A cada equipo Profibus PA hay que asignarle una dirección. Cada dirección solamente se puede asignar una vez en una red Profibus-PA. El sensor es reconocido por el sistema de control solamente si la dirección está configurada correctamente.

En estado de suministro está de fábrica configurada la dirección 126. Ésta puede emplearse para la prueba de funcionamiento del equipo y para la conexión a una red Profibus PA existente. A continuación hay que modificar esa dirección para poder integrar otros equipos.

La configuración de la dirección se realiza opcionalmente mediante:

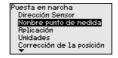

- El selector de direcciones en el compartimiento de la electrónica del equipo (Configuración de dirección por hardware)
- El módulo de visualización y configuración (configuración de dirección por software)
- PACTware/DTM (Configuración de dirección por software)

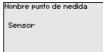
Direccionamiento del hardware


El direccionamiento por hardware es efectivo, cuando se ajusta una dirección menor que 126 con el selector de direcciones en el módulo electrónico del IPT-2x. De esta forma el direccionamiento por software es ineficaz, se aplica la dirección de hardware configurada.

Direccionamiento por software

El direccionamiento por software es efectivo, si se ajusta la dirección 126 o mayor en el equipo con el selector de dirección.

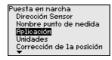

Nombre del punto de medición

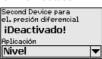

En esta opción de menú *TAG del sensor* editar un identificador de doce dígitos para el punto de medición .

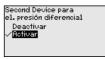
De esta forma se puede asignar una denominación definida al sensor, por ejemplo, el nombre del punto de medida o la denominación del tanque o del producto. En sistemas digitales y la documentación de instalaciones mayores hay que dar una denominación única para la identificación exacta de los puntos de medida individuales.

El conjunto de caracteres comprende:

- Letras de A ... 7
- Números de 0 ... 9
- Caracteres especiales +, -, /, -


Aplicación


En este punto de menú se activa/desactiva el sensor secundario para presión diferencial electrónica y se selecciona la aplicación.


El IPT-2x se puede emplear para la medición de presión de proceso y de nivel. El ajustes de fábrica es medición de presión de proceso. La conmutación se efectúa en este menú de control.

Si no se ha conectado **ningún** sensor secundario, confirmarlo con "
Desactivar".

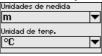
En dependencia de la aplicación, hay diferentes subcapítulos importantes en los siguientes pasos de configuración. Allí podrá encontrar los pasos de configuración individuales.

Entre los parámetros deseados a través de las teclas correspondientes, almacenar la entrada con [OK] y pasar con [ESC] y [->] a la próxima opción de menú.

Unidades

En esta opción de menú de determinan las unidades de ajuste del equipo. La selección realizada determina la unidad indicada en las opciones de menú " Ajuste mín. (cero) " y " Ajuste máx. (span) ".

Unidad de ajuste:

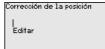


Si hay que ajustar el nivel en una unidad de altura, entonces durante el ajuste es necesaria la entrada posterior de la densidad del medio.

Adicionalmente, se especifica la unidad de temperatura del instrumento. La elección determina la unidad indicada en las opciones del menú " *Indicador de seguimiento temperatura*" y " en las variables de la señal de salida digital".

Unidad de temperatura:

Entre los parámetros deseados a través de las teclas correspondientes, almacenar la entrada con [OK] y pasar con [ESC] y [->] a la próxima opción de menú.


Corrección de posición

La posición de montaje del equipo puede desplazar (Offset) el valor medido, especialmente con sistemas de aislamiento. La corrección

de posición compensa ese Offset. Durante el proceso el valor medido actual se acepta automáticamente. Con celdas de medida de presión relativa se puede realizar adicionalmente un Offset manual.

Si hay que aceptar el valor medido actual como valor de corrección durante la corrección de posición automática, dicho valor no puede estar alterado por recubrimiento de producto o una presión estática.

El valor de offset puede ser determinado por el usuario durante la corrección de posición automática. Para eso seleccionar la función " *Editar*" y entrar el valor deseado.

Guarde sus entradas con **[OK]** y vaya con **[ESC]** y **[->]** a la próxima opción del menú.

Después de realizada la corrección de posición hay que corregir a 0 el valor medido. El valor de corrección aparece en el display como valor de offset con signo invertido.

La corrección de posición se puede repetir a voluntad. Pero si la suma de los valores de corrección sobrepasa el 20 % del rango nominal de medida entonces no hay más posibilidad de corrección de posición.

IPT-2x mide siempre una presión independientemente de la variable de proceso seleccionada en la opción del menú " *Aplicación*". Para emitir correctamente la variable de proceso seleccionada, hay que realizar una asignación a 0 % y 100 % de la señal de salida (Ajuste).

Para la aplicación " *Nivel*" se entra la presión hidrostática para el ajuste, p. Ej. con el depósito lleno y vacío. Véase el ejemplo siguiente:

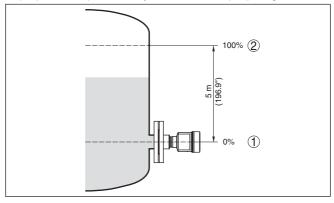


Fig. 27: Ejemplo de parametrización ajuste mín./máx. medición de nivel

- 1 Nivel mín. = 0 % corresponde a 0,0 mbar
- 2 Nivel máx. = 100 % corresponde a a 490,5 mbar

Ajuste

Si se desconocen esos valores, también se puede ajustar con niveles de por ejemplo 10 % y 90 % A través de dichas informaciones se calcula después la verdadera altura de llenado.

El nivel actual no tiene ninguna importancia durante ese ajuste, el ajuste mín./máx. siempre se realiza sin variación del producto. De esta forma pueden realizarse esos ajustes previamente sin necesidad de montaje del instrumento.

•

Indicaciones:

Si se exceden los rangos de ajuste, no se acepta el valor entrado. La edición se puede interrumpir con *[ESC]* o corregir a un valor dentro del rango de ajuste.

Para las variables de proceso restantes tales como p. Ej. presión de proceso, presión diferencial o caudal el ajuste se realiza de forma correspondiente.

Ajuste zero


Proceder de la forma siguiente:

Seleccionar la opción de menú " Puesta en marcha" con [->]
y confirmar con [OK]. Seleccionar ahora con [->] la opción de
menú " Ajuste cero" y confirmar con [OK].

 Editar el valor mbar con [OK], y poner el cursor con [->] sobre el punto deseado.

- 3. Ajustar el valor mbar deseado con [+] y almacenar con [OK].
- 4. Con [ESC] y [->] cambiar al ajuste span

El ajuste cero a finalizado.

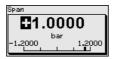
Información:

El ajuste zero desplaza el valor del ajuste span El margen de medición, es decir la cantidad de diferencia entre dichos valores se conserva durante dicha operación.

Para un ajuste con presión entrar simplemente el valor actual indicado debajo en la pantalla.

Si se exceden los rangos de ajuste, entonces aparece en pantalla la indicación " *No se cumple el valor limite*". El proceso de edición se puede interrumpir con *[ESC]* o aceptar el valor límite indicado con *[OK]*.

Ajuste Span


Proceder de la forma siguiente:


 Con [->] seleccionar el punto de menú ajuste span y confirmar con [OK].

 Editar el valor mbar con [OK], y poner el cursor con [->] sobre el punto deseado.

3. Ajustar el valor mbar deseado con [+] y almacenar con [OK].

Para un ajuste con presión entrar simplemente el valor actual indicado debajo en la pantalla.

Si se exceden los rangos de ajuste, entonces aparece en pantalla la indicación " *No se cumple el valor limite*". El proceso de edición se puede interrumpir con *[ESC]* o aceptar el valor límite indicado con *[OK]*.

El ajuste span a finalizado.

Aiuste mínimo - Nivel

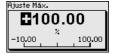
Proceder de la forma siguiente:

Seleccionar la opción del menú " Puesta en marcha" con [->]
y confirmar con [OK]. Seleccionar ahora con [->] la opción de
menú " Ajuste", después seleccionar Ajuste mín. y confirmar con
[OK].

- Editar el valor porcentual con [OK], y poner el cursor con [->] sobre el punto deseado.
- Ajustar el valor porcentual deseado con [+] (p. Ej. 10 %) y almacenarlo con [OK]. El cursor salta al valor de presión.
- Entrar el valor de presión correspondiente para el nivel mín. (p. Ej. 0 mbar).
- Almacenar los ajustes con [OK] y cambiar con [ESC] y [->] al ajuste máx.

El ajuste mín. a finalizado.

Para un ajuste con llenado entrar simplemente el valor actual indicado debajo en la pantalla.


Ajuste máximo - Nivel

Proceder de la forma siguiente:

 Seleccionar con [->] la opción de menú Ajuste máx. y confirmar con [OK].

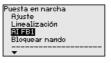
- Editar el valor porcentual con [OK], y poner el cursor con [->] sobre el punto deseado.
- Ajustar el valor porcentual deseado con [+] (p. Ej. 90 %) y almacenarlo con [OK]. El cursor salta al valor de presión.
- Entrar el valor de presión para el depósito lleno correspondiente al valor porcentual (p. Ej. 900 mbar).
- 5. Almacenar ajustes con [OK]

El ajuste máx. a finalizado

Para un ajuste con llenado entrar simplemente el valor actual indicado debajo en la pantalla.

Linealización

Una linealización es necesaria para todos los depósitos donde el volumen del depósito no aumenta linealmente con la altura de nivel - p. Ej., tanque acostado o esférico - y se desea la indicación o salida del volumen. Para esos depósitos hay curvas de linealización adecuadas. Esas curvas representan la correlación entre la altura porcentual de nivel y el volumen del depósito. La linealización se aplica a la indicación del calor medido y a la salida de corriente.



AI FB1

Como la parametrización del Function Block 1 (FB1) es muy exhaustiva, ha sido distribuida en varios puntos de submenú individuales.

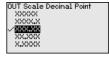
Al FB1 - Channel

En el punto de menú " *Channel*" se determina la señal de entrada para el ulterior procesamiento en el AI FB 1.

Como señales de entrada es posible seleccionar los valores de salida del Transducer Block (TB).

Al FB1 - Unidad de escalada

En el punto de menú " *Unidad de escalada*" se define la magnitud y la unidad de escalada del valor de salida de FB 1.


Al FB1 - Escalada

En el punto de menú " Escalada" se asignan los valores Mín.- y Máx. de la señal de entrada (Channel) a los valores correspondientes de

la salida (Out Scale). Las unidades se corresponden con la selección realizada anteriormente.

Valores Mín. para PV porc. lin. y Out Scale presión de proceso en bar:

Valores Máx. para PV porc. lin. y Out Scale presión de proceso en bar:

Al FB1 - Atenuación

Para la atenuación de las variaciones del valor de medición relacionadas con el proceso, en este punto de menú ajuste una atenuación de 0 ... 999 s. La anchura de paso es de 0,1 s.

El ajuste de fábrica es una atenuación de 0 s.

Bloquear/habilitar aiuste

En el punto de menú " bloquear/habilitar ajuste" se protegen los parámetros del sensor contra modificaciones indeseadas o involuntarias.

Para ello se introduce un PIN de cuatro dígitos.

Con el PIN activo solamente son posibles las funciones de configuración siguientes sin entrada del PIN:

- Selección de opciones de menú e indicación de datos
- Leer los datos del sensor en el módulo de visualización y configuración

La liberación de la configuración del sensor es posible además en cualquier punto de menú mediante la entrada del PIN.

Cuidado:

Cuando el PIN está activo la configuración a través de PACTware/ DTM y de otros sistemas está bloqueada.

6.5.2 Display

Idioma

Esta opción del menú posibilita la configuración del idioma deseado.

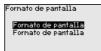
Están disponibles los idiomas siguientes:

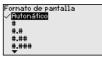
- Alemán
- Inglés
- Francés
- Español
- Ruso
- Italiano
- Holandés
- Portugués
- Japonés
- Chino
- Polaco
- Checo
- Turco

El IPT-2x está ajustado a inglés en el estado de suministro.

Valor de visualización 1 y 2

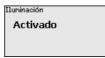
En ese punto menú se define qué valor de medición se visualiza en el display.




El ajuste por defecto para el valor indicado es " *Porcentaje lin.*".

Formato de visualización 1 y 2

En este punto de menú se define con cuántos decimales se visualiza el valor de medición en el display.



El ajuste de fábrica para el formato de visualización es " Automático".

Iluminación

El módulo de visualización y configuración dispone de una retroiluminación para el display. En esta opción de menú se activa la iluminación. La intensidad de la tensión de alimentación necesaria se indica en el capítulo " *Datos técnicos*".

La iluminación está conectada en el estado de suministro.

6.5.3 Diagnóstico

Estado del equipo

En esta opción de menú se indica el estado del equipo.

En caso de fallo aparece el código de error, p. ej. F017, la descripción del error, p. ej. " Rango de ajuste demasiado pequeño" y un número de cuatro dígitos para fines de servicio. Para los códigos de error con descripción, causa y remedios, ver el capítulo " Asset Management".

Indicador de seguimiento presión

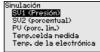
En el sensor se almacena los valores mínimo y máximo correspondientes. En la opción de menú " Indicador de seguimiento presión " se indican ambos valores.

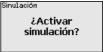
En otra ventana adicional se puede realizar un reset para los indicadores de seguimiento separadamente.

temperatura

Indicador de seguimiento En el sensor se almacenan los valores mínimo y máximo de temperatura de la electrónica. En la opción del menú " Indicador de seguimiento Temperatura" se indican ambos valores.

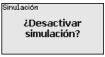
> En otra ventana adicional se puede realizar un reset para ambos indicadores de seguimiento separadamente.





Simulación

En este punto de menú se simulan valores de medición. De esta forma se puede comprobar el recorrido de la señal por el sistema de bus hasta la tarjeta de entrada del sistema de control.



Simulación en proceso Presión 0.0000 bar

Seleccionar la magnitud de simulación deseada y ajustar el valor numérico deseado.

Para desactivar la simulación pulse el botón [ESC] y confirme el mensaje " Desactivar simulación" con el botón [OK].

Cuidado:

Durante la simulación, el valor simulado es entregado como señal digital. El mensaje de estado dentro del marco de la función de gestión de activos es " Maintenance".

Información:

El sensor finaliza la simulación automáticamente después de 60 minutos

6.5.4 Otros aiustes

Fecha/Hora

En esta opción del menú se ajusta el reloj interno del sensor. No se realiza ningún cambio a hora de verano/invierno.

Reset

Durante un reset se restauran determinados ajustes de parámetros realizados por el usuario.

Están disponibles las funciones de restauración siguientes:

Estado de suministro: Restauración de los ajustes de parámetros al momento del suministro de fábrica, incluyendo los ajustes específicos del pedido. Una curva de linealización de libre programación así como la memoria de valores medidos se borrarán.

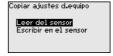
Aiustes básicos: Restauración de los aiustes de parámetros, incluyendo parámetros especiales a los valores por defecto del equipo correspondiente. Una curvas de linealización programada, así como la memoria de valores medidos se borrarán.

Indicaciones:

Encontrará los valores por defecto del equipo en el capítulo " Sinopsis del menú".

Copiar ajustes del equipo

Con esa función se copian los ajustes del equipo. Están disponible las funciones siguientes:

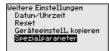

- Lectura desde el sensor: Lectura de datos desde el sensor y almacenaje en el módulo de visualización y configuración
- Escritura en el sensor: Guardar de vuelta en el sensor datos del módulo de visualización v configuración

Durante este proceso se salvan los datos y configuraciones siguientes del ajuste del módulo de visualización y configuración:

- Todos los datos de los menús " Puesta en marcha" y " Display"
- En menú " Otros ajustes" los puntos " Reset, Fecha/Hora"
- La curva de linealización de libre programación

6 Puesta en funcionamiento con el módulo de visualización y configuración

Los datos copiados se salvan permanentemente en una memoria EEPROM en el módulo de visualización y configuración, manteniéndose incluso en caso un corte de la tensión. Pueden escribirse desde allí en uno o varios sensores o ser guardados para el backup de datos en caso de un posible cambio de la electrónica.

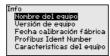

Indicaciones:

Antes de guardar los datos en el sensor se comprueba, si los datos se ajustan al sensor. Durante esta operación se indican el tipo de sensor de los datos de origen y el sensor de destino. En caso de que los datos no se ajusten, entonces se produce un aviso de error o se bloquea la función. El almacenamiento se produce después de la liberación.

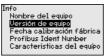
Parámetros especiales

En esta opción del menú se llega a un área protegida, para la entrada de parámetros especiales. En raros casos se pueden modificar parámetros individuales, para adaptar el sensor a requisitos especiales.

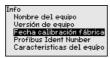
Modifique los ajustes de los parámetros especiales solo después de consultar con nuestros empleados de servicio.



6.5.5 Info


Nombre del dispositivo

En esta opción de menú se lee el nombre y el número de serie del equipo:


Versión de instrumento

En esta opción de menú se indica la versión de hardware y software del sensor.

Fecha de calibración de fábrica

En esta opción del menú se indica la fecha de la calibración de fábrica del sensor así como la fecha de la última modificación de parámetros del sensor con el módulo de visualización y configuración o mediante el PC.

Nº de identificación - Profibus

En ese punto menú se indica el número de identificación Profibus del sensor.

Info
Nombre del equipo
Versión de equipo
Fecha calibración fábrica
Profibus Ident Number
Caracteristicas del equipo

Profibus Ident Number **3065**

Características del sensor

En esta opción del menú se indican características del sensor tales como homologación, conexión a proceso, junta, rango de medición, electrónica, carcasa y otras.

Info Nombre del equipo Versión de equipo Fecha calibración fábrica Profibus Ident Number Caracteristicas del equipo Caracteristicas del equípo ¿Visualizar ahora?

6.6 Sinopsis del menú

Las tablas siguientes indican el menú de configuración del equipo. Dependiendo de la versión del equipo o de la aplicación, no están disponibles todos los puntos de menú o están ocupados de forma diferente.

Puesta en marcha

Opción de menú	Parámetro	Valor por defecto
Dirección del sensor		126
Nombre del punto de me- dición	19 caracteres alfanuméricos/caracteres especiales	Sensor
Aplicación	Nivel, presión de proceso	Nivel
	Dispositivo secundario para presión diferencial electrónica 3)	Desactivadas
Unidades	Unidad de calibración (m, bar, Pa, psi definida por el usuario)	mbar (con rango nominal de medición ≤ 400 mbar)
		bar (con rango nominal de medición ≥ 1 bar)
	Unidad de temperatura (°C, °F)	°C
Corrección de posición		0,00 bar
Ajuste	Ajuste cero/mín.	0,00 bar
		0,00 %
	Calibración span/max.	Rango nominal de medición en bar
		100,00 %
Linealización	lineal, tanque cilíndrico horizontal, definido por el usuario	Lineal

³⁾ Parámetro activo solo cuando el equipo está conectado con un sensor secundario

6 Puesta en funcionamiento con el módulo de visualización y configuración

Opción de menú	Parámetro	Valor por defecto	
AI FB 1	Channel	Primary Value	
	Formato de escalado	Presión	
	Escala	0 % corresponde a 0 bar	
100 % correspor go de medición		100 % corresponde al valor final del ran- go de medición	
	Atenuación	PV FTime 1 s	
Bloquear ajuste	Bloqueado, habilitado	Liberada	

Display

Opción de menú	Valor por defecto	
Idioma del menú	Idioma seleccionado	
Valor indicado 1	Salida de señal en %	
Valor indicado 2	Celda de medida: Temperatura de la celda de medición en °C	
	Celda de medida metálica: Temperatura de la electrónica en °C	
Formato de indicación	Cantidad automática de lugares decimales	
Iluminación	Conectado	

Diagnóstico

Opción de menú	Parámetro	Valor por defecto
Estado del equipo		-
Indicador de seguimiento	Presión	Valor actual de medición de presión
Indicador de seguimiento temp.	Temperatura	Temperatura actual de celda de medida y de electrónica
Simulación	Presión, porcentaje, salida de señal, por- centaje linealizado, temperatura de la celda de medición, temperatura de la electrónica	Presión de proceso

Otros ajustes

Opción de menú	Parámetro	Valor por defecto	
Fecha/Hora		Fecha actual/Hora actual	
Reset	Estado de suministro, ajustes básicos		
Copiar ajustes del equipo	Leer del sensor, escribir en el sensor		
Escala	Magnitud de escalada	Volumen en I	
	Formato de escalado	0 % corresponde a 0 l	
		100 % equivale a 100 l	
Parámetros especiales	Inicio de sesión de servicio	Ningún reset	

6 Puesta en funcionamiento con el módulo de visualización y configuración

Info

Opción de menú	Parámetro
Nombre del dispositivo	IPT-2x
Versión del dispositivo	Versión de hardware y software
Fecha de calibración de fábrica	Fecha
Profibus Ident Number	Número de identificación del equipo en un sistema Profibus
Características del sensor	Características específicas del pedido

6.7 Guardar datos de parametrización

En papel

Se recomienda la anotación de los datos ajustados, p. Ej., en el presente manual de instrucciones, archivándolos a continuación. De esta forma se encuentran disponible para uso múltiple y para fines de servicio.

En el módulo de visualización y configuración

Si el dispositivo está equipado de un módulo de visualización y configuración, entonces es posible guardar en el mismo los datos de parametrización. El procedimiento para ello se describe en el punto de menú " *Copiar ajustes del equipo*".

Diagnóstico, asset management y servicio

7.1 Mantenimiento

Mantenimiento

En caso un uso previsto, no se requiere mantenimiento especial alguno durante el régimen normal de funcionamiento.

Medidas preventivas contra adherencias

En algunas aplicaciones las incrustaciones de producto en la membrana pueden influenciar el resultado de medición. Por eso en dependencia del sensor y de la aplicación tomar precauciones para evitar incrustaciones fuertes y especialmente endurecimientos.

Limpieza

La limpieza contribuye a que sean visibles la placa de características y las marcas en el equipo.

Para ello hay que observar lo siguiente:

- Emplear únicamente productos de limpieza que no dañen la carcasa, la placa de características ni las juntas
- Utilizar sólo métodos de limpieza que se correspondan con el grado de protección

7.2 Memoria de diagnóstico

El equipo tiene y varias memorias, disponibles con objetos de diagnóstico. Los datos se conservan incluso durante una caída de voltaje.

Memoria de valores medidos

Hasta 100.000 valores medidos se pueden almacenar en el sensor en una memoria cíclica. Cada registro contiene fecha/hora, así como el valor medido correspondiente.

En dependencia de versión de equipo, los valores almacenables son p. Ej.:

- Nivel
- Presión de proceso
- Presión diferencial
- Presión estática
- Valor porcentual
- Valores escalados
- Salida de corriente
- Porcentaje lineal
- Temperatura de la celda de medida
- Temperatura de la electrónica

La memoria de valores de medición se encuentra activa en el estado de entrega y registra cada 10 s el valor de presión y la temperatura de la célula de medición, con presión diferencial electrónica además también la presión estática.

Los valores deseados y las condiciones de registro se determinan a través de una PC con PACTware/DTM o el sistema de control con EDD. Por esta vía se leen o se restauran los datos.

Memoria de eventos

Hasta 500 eventos son almacenados automáticamente con cronosellador en el sensor de forma imborrable. Cada registro contiene fecha/ hora, tipo de evento, descripción del evento y valor. Tipos de eventos son p. Ej.:

- Modificación de un parámetro
- Puntos de tiempo de conexión y desconexión
- Mensajes de estado (según NE 107)
- Avisos de error (según NE 107)

Los datos se leen con una PC con PACTware/DTM o el sistema de control con FDD.

7.3 Función Asset-Management

El equipo dispone de un autocontrol y de un diagnóstico según NE 107 y VDI/VDE 2650. Para los mensajes de estado representados en la tabla siguiente pueden verse mensajes de error detallados bajo el punto de menú " *Diagnóstico*" a través de la herramienta operativa correspondiente.

Señal de estado

Los avisos de estado se subdividen en las categorías siguientes:

- Fallo
- Control de funcionamiento
- Fuera de la especificación
- Necesidad de mantenimiento.

y explicado mediante pictogramas

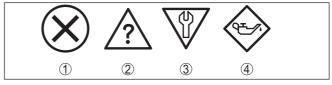


Fig. 28: Pictogramas de mensajes de estado

- 1 Fallo (Failure) rojo
- 2 Fuera de la especificación (Out of specification) amarillo
- 3 Control de funcionamiento (Function check) naranja
- 4 Necesidad de mantenimiento (Maintenance) azul

Fallo (Failure):

A causa de un fallo de funcionamiento detectado en el equipo, el equipo emite una señal de fallo.

Este mensaje de estado siempre está activo. No puede ser desactivado por el usuario.

Control de funcionamiento (Function check):

Se esta trabajando en el equipo, el valor de medición es temporalmente inválido (p. ej. durante la simulación).

Este mensaje de estado se encuentra inactivo por defecto.

Fuera de la especificación (Out of specification):

El valor de medición es inseguro, ya que se ha excedido la especificación del equipo (p. ej. temperatura de la electrónica).

Este mensaje de estado se encuentra inactivo por defecto.

Necesidad de mantenimiento (Maintenance):

El funcionamiento del equipo está limitado por factores externos. La medición está afectada, pero el valor de medición sigue siendo válido aún. Planificar el mantenimiento del equipo, ya que se espera un fallo en un futuro próximo (p. ej. por adherencias).

Este mensaje de estado se encuentra inactivo por defecto.

Failure

Código	Causa	Corrección	DevSpec
Mensaje de texto			Diagnosis Bits
F013	Sobrepresión o depresión	Cambiar celda de medición	Bit 0
Ningún valor de medida válido disponible	Celda de medida defectuosa	Enviar el equipo a reparación	
F017	Ajuste no dentro de la especifi-	Modificar ajuste de acuerdo con	Bit 1
Margen de ajuste muy pequeño	cación	los valores límites	
F025	Los puntos de interpolación no	Comprobar tabla de linealización	Bit 2
Error en la tabla de li- nealización	aumentan continuamente, p. ej. pares de valores ilógicos	Borrar tabla/crear tabla nueva	
F036	Actualización del software fraca-	Repetir actualización del software	Bit 3
Ningún software de sen-	sada o interrumpida	Comprobar la versión electrónica	
sor ejecutable		Cambiar electrónica	
		Enviar el equipo a reparación	
F040	Defecto de hardware	Cambiar electrónica	Bit 4
Error en la electrónica		Enviar el equipo a reparación	
F041	Ninguna conexión hacia la elec-	Comprobar conexión entre el	Bit 13
Error de comunicación	trónica del sensor	sensor y la electrónica principal (con versión separada)	
F042	Sin conexión con el sensor se-	Comprobar la conexión entre el	Bit 28 de
Error de comunicación sensor secondary	cundario	sensor primario y el sensor se- cundario	Byte 0 5
F080	Error general de software	Desconectar momentáneamente	Bit 5
Error general de sof- tware		la tensión de alimentación	
F105	El equipo está todavía en la fa-	Esperar final de la fase de co-	Bit 6
Determinando valor	se de arranque, todavía no se ha podido determinar el valor me- dido	nexión	
F113	Error en la comunicación interna	Desconectar momentáneamente	Bit 12
Error de comunicación	del equipo	la tensión de alimentación	
		Enviar el equipo a reparación	
F260	Error en la calibración ejecutada de fábrica	Cambiar electrónica	Bit 8
Error en la calibración	Error en el EEPROM	Enviar el equipo a reparación	

7 Diagnóstico, asset management y servicio

Código	Causa	Corrección	DevSpec
Mensaje de texto			Diagnosis Bits
F261 Error en el ajuste del equipo	Error durante la puesta en mar- cha Erro durante la ejecución de un reset	Repetir puesta en marcha Repetir reset	Bit 9
F264 Error de montaje/puesta en marcha	Ajustes inconsistentes (p. Ej.: Distancia, unidades de ajuste en caso de aplicación presión de proceso) para la aplicación se- leccionada	Modificar ajustes Modificar configuración del sensor o aplicación conectada	Bit 10
	Configuración del sensor invalida (p. Ej.: aplicación presión dife- rencial electrónica con celda de medición de presión diferencial conectada)		
F265 Función de medición in- terrumpida	El sensor no realiza mas ningu- na medición	Ejecutar un reset Desconectar momentáneamente la tensión de alimentación	Bit 11

Tab. 6: Códigos de error y mensajes de texto, indicaciones para la causa y para la eliminación

Function check

Código Mensaje de texto	Causa	Corrección	DevSpec Diagnosis Bits
C700	Una simulación está activa	Simulación terminada	Bit 27
Simulación activa		Esperar finalización automática después de 60 min.	

Out of specification

Causa	Corrección	DevSpec
		Diagnosis Bits
Temperatura de la electrónica no	Comprobar la temperatura am-	Bit 23
en el rango especificado	biente	
	Aislar la electrónica	
	Emplear equipo con mayor rango	
	'	D': 00
, ,	Comprobar conexión eléctrica	Bit 26
rango especificado	Aumentar la tensión de alimenta-	
	ción si fuera preciso	
Presión de proceso medida por	Comprobar el rango de medición	Bit 29
debajo o por encima del rango	nominal del equipo	
de ajuste	Dado el caso, emplear un equipo con un rango de medición mayor	
	Temperatura de la electrónica no en el rango especificado Tensión de trabajo debajo del rango especificado Presión de proceso medida por	Temperatura de la electrónica no en el rango especificado Comprobar la temperatura ambiente Aislar la electrónica Emplear equipo con mayor rango de temperatura Tensión de trabajo debajo del rango especificado Comprobar conexión eléctrica Aumentar la tensión de alimentación si fuera preciso Presión de proceso medida por debajo o por encima del rango de ajuste Comprobar el rango de medición nominal del equipo Dado el caso, emplear un equipo

Maintenance

Código	Causa	Corrección	DevSpec
Mensaje de texto			Diagnosis Bits
M500	Durante el reset al estado de su-	Repetir reset	Bit 15
Error en el estado de su- ministro	ministro no se pudieron restaurar los datos	Cargar archivo XML con los datos del sensor en el sensor	
M501	Los puntos de interpolación no	Comprobar tabla de linealización	Bit 16
Error en la tabla de li- nealización no activa	aumentan continuamente, p. ej. pares de valores ilógicos	Borrar tabla/crear tabla nueva	
M502	Error de hardware EEPROM	Cambiar electrónica	Bit 17
Error en la memoria de eventos		Enviar el equipo a reparación	
M504	Defecto de hardware	Cambiar electrónica	Bit 19
Error en una interface del equipo		Enviar el equipo a reparación	
M507	Error durante la puesta en mar-	Ejecutar reset y repetir puesta en	Bit 22
Error en el ajuste del	cha	marcha	
equipo	Erro durante la ejecución de un reset		

7.4 Eliminar fallos

Comportamiento en caso de fallos

Es responsabilidad del operador de la instalación, la toma de medidas necesarias para la eliminación de los fallos ocurridos.

Eliminación de fallo

Las primeras medidas son:

- Evaluación de mensajes de error
- Control de la señal de salida
- Tratamiento de errores de medición

Un PC/portátil con el software PACTware y el DTM adecuado ofrecen más posibilidades exhaustivas de diagnóstico. En muchos casos es posible determinar de este modo las causas y eliminar así los fallos.

Comportamiento después de la eliminación de fallos

En dependencia de la causa de interrupción y de las medidas tomadas hay que realizar nuevamente en caso necesario los pasos de procedimiento descritos en el capítulo " *Puesta en marcha*".

7.5 Cambiar módulo de proceso con versión IP68 (25 bar)

Con la versión IP68 (25 bar) el usuario puede cambiar el módulo de proceso localmente. El cable de conexión y la carcasa externa se pueden conservar.

Herramientas necesarias:

Llave Allen, tamaño 2

Cuidado:

El recambio solo se puede realizar en estado libre de tensión

En aplicaciones Ex, solamente puede emplearse una pieza de recambio con homologación Ex correspondiente.

Cuidado:

Durante el cambio, proteger los lados interiores contra suciedad y humedad.

Para el cambio proceder de la forma siguiente:

- 1. Soltar el tornillo prisionero con la llave Allen
- 2. Sacar el módulo de cables con cuidado del módulo de proceso

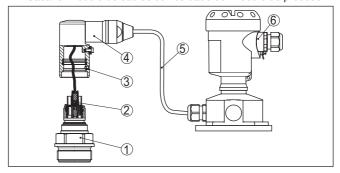


Fig. 29: IPT-2x en versión IP68 25 bar y salida de cable lateral, carcasa externa

- Módulo de proceso
- 2 Conector enchufable
- 3 Tornillo prisionero
- 4 Módulo de cables
- 5 Cable de conexión
- 6 Carcasa externa
- 4. Montar módulo de proceso nuevo en el punto de medida
- 5. Enchufar de nuevo el acoplamiento de enchufe
- Insertar el módulo de cables en el módulo de proceso y girarlo a la posición deseada
- 7. Apretar el tornillo prisionero con la llave Allen

Con esto termina el recambio.

7.6 Reparación del equipo

3. Soltar acoplamiento de enchufe

Indicaciones para la devolución se encuentran en la rúbrica " *Servicio*" en nuestra página de internet local.

Si es necesaria una reparación, proceder de la forma siguiente:

- Llenar un formulario para cada equipo
- Indicar una contaminación eventual
- Limpiar el equipo y empacarlo a prueba de rotura
- Adjuntar al equipo el formulario lleno y una hoja de datos de seguridad en caso necesario

8 Desmontaje

8.1 Pasos de desmontaje

Para el desmontaje del equipo, lleve a cabo en el orden inverso los pasos descritos en los capítulos " *Montaje*" y " *Conectar a la alimentación de tensión*".

Advertencia:

Al llevar a cabo el desmontaje, preste atención a las condiciones de proceso dentro de los depósitos o de las tuberías. Existe riesgo de lesiones p. ej. debido a las altas presiones o temperaturas y a los medios agresivos o tóxicos. Tome las medidas de protección correspondientes para prevenirlo.

8.2 Eliminar

Entregue el equipo directamente a una empresa de reciclaje especializada y no utilice para ello los puntos de recogida municipales.

Retire primero las baterías que pudiera haber, siempre que sea posible retirarlas del equipo, y proceda a eliminarlas por separado de la forma debida.

Si hubiera guardados datos personales en el equipo usado por eliminar, hay que borrarlos antes de proceder a la eliminación del equipo.

Si no tiene posibilidades, de reciclar el equipo viejo de forma especializada, consulte con nosotros acerca de las posibilidades de reciclaje o devolución.

9 Anexo

9.1 Datos técnicos

Nota para equipos homologados

Para equipos homologados (p. ej. con aprobación Ex) rigen los datos técnicos de las correspondientes indicaciones de seguridad. Estos pueden diferir de los datos aquí aducidos por ejemplo para las condiciones de proceso o para la alimentación de tensión.

Todos los documentos de homologación se pueden descargar de nuestra página web.

Indicación para equipos con rangos de medición > 1000 bar

Para equipos con rangos de medición > 1000 bar rigen los datos técnicos de las " *Instrucciones adicionales para versiones de alta presión*" incluidas en el material suministrado con el equipo. Puede haber divergencias con respecto a los datos aquí aducidos en caso p. ej. de desviación de medición, de materiales en contacto con el medio o de estabilidad a largo plazo.

Materiales y pesos

Materiales, en contacto con el medio (Celda de medida piezorresistiva/galga extensométrica)⁴⁾

Conexión a proceso 316L, Alloy C276 (2.4819)

Membrana

- Frontal rasante 316L, Alloy C276 (2.4819) ⁵⁾

- Pospuesto (rangos de medición hasta 316L

inclusive 40 bar, a partir de 1600 bar)

- Pospuesto (rangos de medición a

partir de 100 bar hasta inclusive 1000 bar)

Elgiloy (2.4711)

FKM (VP2/A), EPDM (A+P 70.10-02), FFKM (Perlast G74S), FEPM (Fluoraz SD890)

Junta para conexión a proceso (en el alcance de suministro)

- Rosca G½ (EN 837), G1½ (DIN 3852- Aramid/NBR

A)

Acabado superficial conexiones a proce- R₂ < 0,76 μm

so higiénicas, tipo

Sello, anillo en O

materiales, en contacto con el medio (celda de medición cerámica/capacitiva)⁶⁾

Conexión a proceso 316L

Membrana Alloy C276 (2.4819), recubierto de oro 20 μ, recubierto

de oro/rodio 5 $\mu/1$ μ^{7}

Junta para conexión a proceso (en el alcance de suministro)

- Rosca G1½ (DIN 3852-A) Klingersil C-4400

- Rosca M44 x 1,25 (DIN 13) FKM, FFKM, EPDM

⁵⁾ Alloy C276 (2.4819) con conexión a proceso de Alloy C276 (2.4819)

7) No para equipos con calificación SIL.

⁴⁾ Las piezas en contacto con el medio tienen una rugosidad R_a < 0,76 μm. Esto se asegura mediante acuerdos con los proveedores y controles de entrada de mercancías según el plan de inspección por muestreo AQL.</p>

⁶⁾ Las piezas en contacto con el medio tienen una rugosidad R_a < 0,76 μm. Esto se asegura mediante acuerdos con los proveedores y controles de entrada de mercancías según el plan de inspección por muestreo AQL.</p>

Acabado superficial conexiones a proce- $R_a < 0.76 \mu m$

so higiénicas, tipo

Materiales, sin contacto con el medio

Líquido de aislamiento celda de medi-

ción cerámica/metálica

Fluido de separador interno celda de

medida piezorresistiva

KN 92 aceite blanco medicinal (conforme a FDA)

Aceite sintético KN 77, Neobee M 20 KN 59 (conforme a

FDA), aceite halocarbonado 6.3 KN 21 8) 9)

Carcasa

Carcasa
 Plástico PBT (poliéster), aluminio AlSi10Mg (recubierto

NBR, PA

de polvo, base: poliéster), 316L

Prensaestopas
 PA, acero inoxidable, latón

Racor atornillado para cables: Sello,

cierre

Junta tapa de la carcasa
 Silicona SI 850 R, NBR sin silicona

Mirilla en la tapa de la carcasa
 Policarbonato (UL-746-C listado), vidrio 10)

Terminal de conexión a tierra
 316L

Carcasa externa - diferentes materiales

Carcasa y base
 Plástico PBT (Poliéster), 316L

Junta de la baseJunta debajo de la placa de montajeEPDM

mural 11)

- Mirilla en la tapa de la carcasa Policarbonato (UL-746-C listado)

Terminal de conexión a tierra 316Ti/316L Cable de conexión para versión IP68 (25 bar) 12)

Cubierta del cable
 Soporte de placa de tipos en el cable
 Cable de conexión con versión IP68
 PE, PUR

(1 bar) 13)

Pesos

Peso total IPT-2x aprox. 0,8 ... 8 kg (1.764 ... 17.64 lbs), en dependencia

de la conexión a proceso y de la carcasa

Pares de apriete

Par máximo de apriete, conexiones a proceso métricas

- G¼, G½ 50 Nm (36.88 lbf ft)

- G½ frontal rasante, G1 frontal rasante 40 Nm (29.50 lbf ft)

⁸⁾ Líquido de aislamiento con rangos de medición hasta 40 bar. Con rangos de medición a partir de 100 bar celda de medida seca.

⁹⁾ Aceite halocarbónico: Generalmente en caso de aplicaciones de oxigeno, no para rangos de medición de vacío, no para rangos de medición absolutos <1 bar_{aba}.

¹⁰⁾ Vidrio para carcasas de aluminio y acero inoxidable (fundición de precisión)

¹¹⁾ Sólo para 316L con homologación 3A

¹²⁾ Entre el sensor de valores medidos y la carcasa de la electrónica externa.

¹³⁾ Unido de forma fija con el sensor.

- G1½ frontal rasante (celda de medida 40 Nm (29.50 lbf ft) piezorresistiva)
- G1½ frontal rasante (celda de medida 200 Nm (147.5 lbf ft) cerámica/metálica)

Par máximo de apriete, conexiones a proceso no métricas

- ½ NPT, interior ¼ NPT 50 Nm (36.88 lbf ft)

≤ 40 bar/500 psig

- ½ NPT, interior ¼ NPT 200 Nm (147.5 lbf ft)

> 40 bar/500 psig

7/16 NPT para tubería ¼"
 9/16 NPT para tubería 3/8"
 50 Nm (36.88 lbf ft)

Par de apriete máximo para racores atornillados para cables NPT y tubos Conduit

Carcasa de plástico
 10 Nm (7.376 lbf ft)
 Carcasa de aluminio/acero inoxidable
 50 Nm (36.88 lbf ft)

Variable de entrada - Celda de medida galga extensométrica piezorresistiva

Las especificaciones sirven para la descripción y se refieren a la celda de medida. Existe la posibilidad de restricciones a causa del material, el modo de construcción de la conexión a proceso y el tipo de presión seleccionado. Siempre rigen las especificaciones de la placa de características. ¹⁴⁾

Rangos nominales de medición y capacidad de sobrecarga en bar/kPa

Rango nominal de medición	Capacidad de sobrecarga		
	Presión máxima	Presión mínima	
Sobrepresión			
0 +0,4 bar/0 +40 kPa	+1,2 bar/+120 kPa	-1 bar/-100 kPa	
0 +1 bar/0 +100 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa	
0 +2,5 bar/0 +250 kPa	+7,5 bar/+750 kPa	-1 bar/-100 kPa	
0 +10 bar/0 +1000 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	
0 +25 bar/0 +2500 kPa	+75 bar/+7500 kPa	-1 bar/-100 kPa	
0 +40 bar/0 +4000 kPa	+120 bar/+12 MPa	-1 bar/-100 kPa	
0 +100 bar/0 +10 MPa	+200 bar/+20 MPa	-1 bar/-100 kPa	
0 +250 bar/0 +25 MPa	+500 bar/+50 MPa	-1 bar/-100 kPa	
0 +600 bar/0 +60 MPa	+1200 bar/+120 MPa	-1 bar/-100 kPa	
0 +1000 bar/0 +100 MPa	+1500 bar/+150 MPa	-1 bar/-100 kPa	
-1 0 bar/-100 0 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa	
-1 +1,5 bar/-100 +150 kPa	+7,5 bar/+750 kPa	-1 bar/-100 kPa	
-1 +10 bar/-100 +1000 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	
-1 +25 bar/-100 +2500 kPa	+75 bar/+7500 kPa	-1 bar/-100 kPa	
-1 +40 bar/-100 +4000 kPa	+120 bar/+12 MPa	-1 bar/-100 kPa	
-0,2 +0,2 bar/-20 +20 kPa	+1,2 bar/+120 kPa	-1 bar/-100 kPa	

¹⁴⁾ Los datos sobre la resistencia a la sobrecarga se aplican a la temperatura de referencia.

Rango nominal de medición	Capacid	ad de sobrecarga
	Presión máxima	Presión mínima
-0,5 +0,5 bar/-50 +50 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa
Presión absoluta		
0 1 bar/0 100 kPa	3 bar/300 kPa	0 bar abs.
0 2,5 bar/0 250 kPa	7,5 bar/750 kPa	0 bar abs.
0 10 bar/0 1000 kPa	30 bar/3000 kPa	0 bar abs.
0 25 bar/0 2500 kPa	75 bar/+7500 kPa	0 bar abs.
0 40 bar/0 4000 kPa	120 bar/+12 MPa	0 bar abs.

Rangos nominales de medición y capacidad de sobrecarga en psi

Rango nominal de medición	Capacidad de sobrecarga			
	Presión máxima	Presión mínima		
Sobrepresión	Sobrepresión			
0 +5 psig	+15 psig	-14.5 psig		
0 +15 psig	+45 psig	-14.5 psig		
0 +30 psig	+90 psig	-14.5 psig		
0 +150 psig	+450 psig	-14.5 psig		
0 +300 psig	+900 psig	-14.5 psig		
0 +500 psig	+1500 psig	-14.5 psig		
0 +1450 psig	+3000 psig	-14.5 psig		
0 +3000 psig	+6000 psig	-14.5 psig		
0 +9000 psig	+18000 psig	-14.5 psig		
0 +15000 psig	+22500 psig	-14.5 psig		
-14.5 0 psig	+45 psig	-14.5 psig		
-14.5 +20 psig	+90 psig	-14.5 psig		
-14.5 +150 psig	+450 psig	-14.5 psig		
-14.5 +300 psig	+900 psig	-14.5 psig		
-14.5 +600 psig	+1200 psig	-14.5 psig		
-3 +3 psig	+15 psig	-14.5 psig		
-7 +7 psig	+45 psig	-14.5 psig		
Presión absoluta				
0 15 psi	45 psi	0 psi		
0 30 psi	90 psi	0 psi		
0 150 psi	450 psi	0 psi		
0 300 psi	600 psi	0 psi		
0 500 psig	1500 psi	0 psi		

Variable de entrada - Celda de medida cerámica/metálica

Las especificaciones sirven para la descripción y se refieren a la celda de medición. Existe la posibilidad de restricciones a causa del material y el modo de construcción de la conexión a proceso. Se aplican las especificaciones de la placa de tipos ¹⁵⁾

Rangos nominales de medición y capacidad de sobrecarga en bar/kPa

Rango nominal de medición	Capacidad de sobrecarga		
	Presión máxima	Presión mínima	
Sobrepresión			
0 +0,1 bar/0 +10 kPa	+15 bar/+1500 kPa	-1 bar/-100 kPa	
0 +0,4 bar/0 +40 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	
0 +1 bar/0 +100 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
0 +2,5 bar/0 +250 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +5 bar/0 +500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +10 bar/0 +1000 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +25 bar/0 +2500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-1 0 bar/-100 0 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
-1 +1,5 bar/-100 +150 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-1 +5 bar/-100 +500 kPa	+50 bar/+6500 kPa	-1 bar/-100 kPa	
-1 +10 bar/-100 +1000 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-1 +25 bar/-100 +2500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-0,05 +0,05 bar/-5 +5 kPa	+10 bar/+1000 kPa	-1 bar/-100 kPa	
-0,2 +0,2 bar/-20 +20 kPa	+20 bar/+2000 kPa	-1 bar/-100 kPa	
-0,5 +0,5 bar/-50 +50 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
Presión absoluta			
0 1 bar/0 100 kPa	35 bar/3500 kPa	0 bar abs.	
0 2,5 bar/0 250 kPa	50 bar/5000 kPa	0 bar abs.	
0 10 bar/0 1000 kPa	50 bar/5000 kPa	0 bar abs.	
0 25 bar/0 2500 kPa	50 bar/5000 kPa	0 bar abs.	

Rangos nominales de medición y capacidad de sobrecarga en psi

Rango nominal de medición	Capacidad de sobrecarga		
	Presión máxima	Presión mínima	
Sobrepresión			
0 +1.5 psig	+225 psig	-14.5 psig	
0 +5 psig	+375 psig	-14.5 psig	
0 +15 psig	+525 psig	-14.5 psig	
0 +30 psig	+720 psig	-14.5 psig	

¹⁵⁾ Los datos sobre la resistencia a la sobrecarga se aplican a la temperatura de referencia.

Rango nominal de medición	Capacidad de sobrecarga		
	Presión máxima	Presión mínima	
0 +75 psig	+720 psig	-14.5 psig	
0 +150 psig	+720 psig	-14.5 psig	
0 +300 psig	+720 psig	-14.5 psig	
-14.5 0 psig	+510 psig	-14.5 psig	
-14.5 +20 psig	+720 psig	-14.5 psig	
-14.5 +75 psig	+975 psig	-14.51 psig	
-14.5 +150 psig	+725 psig	-14.5 psig	
-14.5 +300 psig	+725 psig	-14.5 psig	
-0.7 +0.7 psig	+225 psi	-14.5 psig	
-3 +3 psig	+190 psi	-14.5 psig	
-7 +7 psig	+525 psig	-14.5 psig	
Presión absoluta			
0 15 psi	525 psi	0 psi	
0 30 psi	+720 psig	0 psi	
0 150 psi	+720 psig	0 psi	
0 300 psi	+720 psig	0 psi	

Rangos de ajuste

Las informaciones se refieren al rango nominal de medición, valores de presión menores que -1 bar no se pueden ajustar

Ajuste mín./máx.:

- Valor porcentual
 - Valor de presión
 -20 ... 120 %

Ajuste zero/span:

- Zero -20 ... +95 % - Span -120 ... +120 %

- Diferencia entre zero y span máx. 120 % del rango nominal de medición

Turn Down máx. permisible Ilimitado (recomendado 20 : 1)

Fase de conexión

Tiempo de arranque con tensión de alimentación U_B

 $- \ge 12 \text{ V DC}$ $\le 9 \text{ s}$ - < 12 V DC $\le 22 \text{ s}$

Magnitud de salida

Señal de salida señal de salida digital, protocolo Profibus

Coeficiente de transmisión 31,25 Kbit/s

Dirección del equipo 126 (Ajuste de fábrica)

Atenuación (63 % de la magnitud de

entrada)

0 ... 999 s, ajustable

Perfil Profibus PA

3.02

Cantidad de FBs con Al (bloques de funciones con entrada analógica)

3

Valores por defecto

- 1. FB Primary Value (presión linealizada en %)

- 2. FB- 3. FBSecondary Value 1 (presión)- 3. FBSecondary Value 2 (presión en %)

Valor de la corriente

Instrumentos No-Ex-, Ex ia- Ex d
 12 mA, ±0,5 mA

Comportamiento dinámico salida

Parámetros dinámicos, independientes del producto y la temperatura

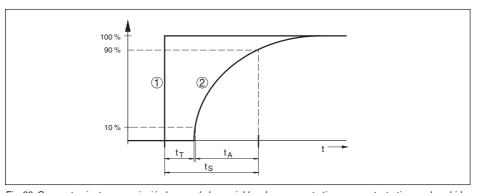


Fig. 30: Comportamiento con variación brusca de las variables de proceso. t_r tiempo muerto; t_A : tiempo de subida; t_S : tiempo de respuesta gradual

- 1 Magnitud de proceso
- 2 Señal de salida

	IPT-2x	IPT-2x, IP68 (25 bar), cable de conexión > 25 m (82.01 ft)
Tiempo muerto	≤ 25 ms	≤ 50 ms
Tiempo de crecimiento (10 90 %)	≤ 55 ms	≤ 150 ms
Tiempo de respuesta de salto (ti: 0 s, 10 90 %)	≤ 80 ms	≤ 200 ms

Atenuación (63 % de la magnitud de entrada)

0 ... 999 s, ajustable con el punto de menú " Atenua-ción"

Condiciones de referencia y factores de influencia (según DIN EN 60770-1)

Condiciones de referencia según DIN EN 61298-1

- Temperatura +18 ... +30 °C (+64 ... +86 °F)

- Humedad relativa del aire 45 ... 75 %

Presión de aire
 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psi)
 Definición curva característica
 Ajuste del punto limite según la norma IEC 61298-2

Curva característica Lineal

Posición de montaje de referencia vertical, la Influencia posición de montaje

vertical, la membrana de medición señala hacia abajo

 Celda de medida galga extensométrica piezorresistiva

dependiente de la conexión a proceso y el separador

Celda de medida cerámica/metálica
 5 mbar/0,5 kPa (0.07 psig)

Desviación (según IEC 60770-1)

Los datos se refieren al rango de medición ajustado. Turn down (TD) es la relación rango de medición nominal/margen de medición ajustado.

Clase de precisión	Falta de linealidad, histéresis y falta de repetibilidad, TD 1 : 1 hasta 5 : 1	Falta de linealidad, histéresis y falta de repetibilidad con TD > 5 : 1
0,075 %	< 0,075 %	< 0,015 % x TD
0,1 %	< 0,1 %	< 0,02 % x TD
0,2 %	< 0,2 %	< 0,04 % x TD

Influencia de la temperatura del producto

Variación térmica de la señal de cero y margen de salida

Turn down (TD) es la relación rango nominal de medición/margen ajustado

La variación térmica de la señal de cero y el margen de salida corresponden con el valor F_{τ} en el capítulo " *Cálculo de la desviación total (según DIN 16086)*".

Celda de medida galga extensométrica piezorresistiva

El error básico de temperatura en % de la gráfica superior puede aumentar a causa de factores adicionales tales como el rango de temperatura (Factor FMZ) y Turn Down (Factor FTD. Los factores adicionales aparecen listados en las tablas siguientes.

Factor adicional por la clase de precisión

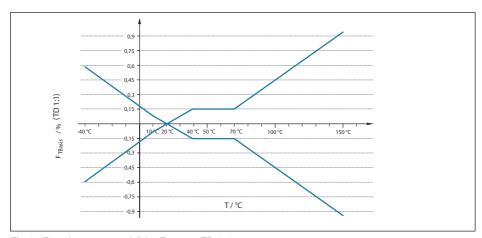


Fig. 31: Error de temperatura básico $F_{{\it TBasis}}$ con TD 1 : 1

El error básico de temperatura en % de la gráfica superior puede aumentar a causa de factores adicionales tales como el rango de temperatura (Factor FMZ) y Turn Down (Factor FTD. Los factores adicionales aparecen listados en las tablas siguientes.

Factor adicional por la clase de precisión

Clase de precisión	0,075 %, 0,1 %	0,2 %
Factor FMZ	1	3

Factor adicional por Turn Down

El factor adicional FTD debido al Turn Down se calcula según la formula siguiente:

$$F_{TD} = 0.5 \times TD + 0.5$$

En la tabla aparecen listados valores de ejemplo para Turn Downs típicos.

Turn Down	TD 1:1	TD 2,5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1,75	3	5,5	10,5

Celda de medida cerámica/metálica - estándar

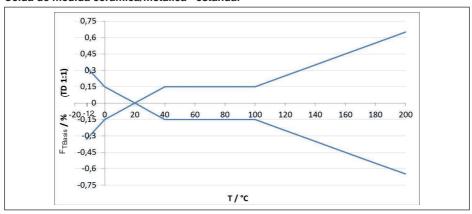


Fig. 32: Error de temperatura básico F_{TBasis} con TD 1 : 1

El error básico de temperatura en % de la gráfica superior puede aumentar a causa de factores adicionales en dependencia de la versión de la celda de medición (Factor FMZ) y Turn Down (Factor FTD. Los factores adicionales aparecen listados en las tablas siguientes.

Factor adicional por la versión de la celda de medición

Versión de la celda de medición	Celda de medida - Estándar	
	0,075 %, 0,1 %	0,2 %
Factor FMZ	1	3

Factor adicional por Turn Down

El factor adicional FTD debido al Turn Down se calcula según la formula siguiente:

$$F_{TD} = 0.5 \times TD + 0.5$$

En la tabla aparecen listados valores de ejemplo para Turn Downs típicos.

Turn Down	TD 1:1	TD 2,5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1,75	3	5,5	10,5

Estabilidad a largo plazo (según DIN 16086)

Vale para la salida de señal **digital** correspondiente (p. Ej. HART, Profibus PA), así como para la salida de corriente **analógica** de 4 ... 20 mA bajo las condiciones de referencia. Los datos se refieren al margen de medición ajustado. Turn down (TD) es la relación rango de medición nominal/margen de medición ajustado. 16)

¹⁶⁾ Con celda de medición cerámico/metálica con membrana recubierta de oro hay que multiplicar los valores por el factor 3

Estabilidad a largo plazo de la señal cero y el intervalo de salida - Celda de medida cerámica/metálica

Periodo de tiempo	
Un año	< 0,05 % x TD
Cinco años	< 0,1 % x TD
Diez años	< 0,2 % x TD

Estabilidad a largo plazo de la señal de cero y rango de salida - Célula de medida piezoresistiva/extensiométrica

Rango de medida/Versión	Celda de medida piezorresistiva	Celda de medida ex- tensiométrica
Rangos de medición > 1 bar	< 0,1 % x TD/año	
Rangos de medición > 1 bar, líquido de aislamiento aceite sintético, membrana Alloy C276	< 0,15 % x TD/año	
Rango de medición 1 bar		_
Rango de medición 0,4 bar	< 0,35 % x TD/año	

Deriva a largo plazo (según IEC 61298-2) para aplicaciones de hidrógeno

Durante el empleo en aplicaciones con hidrógeno, puede producirse una deriva de la señal a causa de difusión en las estructuras del sensor a lo largo del tiempo. El grado de deriva depende principalmente de factores tales como temperatura del hidrógeno, proporción de hidrógeno en el medio y grosor de la membrana del sensor de presión utilizado. Se recomienda comprobar la idoneidad de la versión del producto seleccionada.

Deriva a largo plazo tipíca \leq 1 % x TD/año Deriva a largo plazo máxima \leq 3 % x TD/año

Condiciones ambientales

Versión	Temperatura ambiente	Temperatura de almacenaje y transporte
Versión estándar	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Versión IP66/IP68, (1 bar)	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Versión IP68 (25 bar), con cable de co- nexión PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Versión IP68 (25 bar) con cable de co- nexión PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Condiciones de proceso - celda de medida extensométrica DMS piezorresistiva

Temperatura de proceso

Junta		Versión del sensor			
	Estándar	Rango de temperatura ampliado	Conexiones higiénicas		Versiones para aplicaciones de oxigeno
	p _{abs} ≥ 1 r	nbar	p _{abs} ≥ 1 mbar	p _{abs} ≥ 1 mbar p _{abs} ≥ 10 mbar	
Sin considera- ción del sello ¹⁷⁾	-20/-40 +105 °C (-4/-40 +221 °F)	_	_	-	-20 +60 °C
FKM (VP2/A)	-20 +105 °C	-20 +150 °C	-20 +85 °C	-20 +150 °C	(-4 +140 °F)
EPDM (A+P 70.10-02)	(-4 +221 °F)		(-4 +185 °F)	(-4 +302 °F)	(,
FFKM (Perlast	-15 +105 °C	-15 +150 °C	-15 +85 °C	-15 +150 °C	-15 +60 °C
G74S)	(+5 +221 °F)	(+5 +302 °F)	(+5 +185 °F)	(+5 +302 °F)	(+5 +140 °F)
FEPM (Fluoraz SD890)	-5 +105 °C	_	-	-	-5 +60 °C
30030)	(+23 +221 °F)				(+23 +140 °F)

Reducción de temperatura

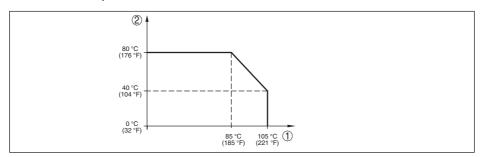


Fig. 33: Reducción de temperatura IPT-2x, versión hasta +105 °C (+221 °F)

- 1 Temperatura de proceso
- 2 Temperatura ambiente

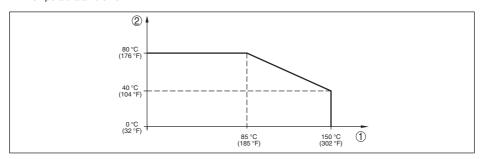


Fig. 34: Reducción de temperatura IPT-2x, versión hasta +150 °C (+302 °F)

- 1 Temperatura de proceso
- 2 Temperatura ambiente

¹⁷⁾ Conexiones a proceso según DIN 3852-A, EN 837

Temperatura de proceso SIP (SIP = Sterilization in place)

Admisión de vapor para 2 h 18) +150 °C (+302 °F)

Presión de proceso

Presión de proceso permisible ver especificación "Process pressure" en la placa de

características

Esfuerzo mecánico

	Sin tramo de	refrigeración	Con tramo de refrigeración	
Versión	Todas las versio- nes de carcasa	Cámara doble de acero inoxidable	Todas las versio- nes de carcasa	Cámara doble de acero inoxidable
Resistencia a las vibraciones con 5 200 Hz según EN 60068-2-6 (vibra- ción con resonancia)	4 g (curva característica GL 2)	0,7 g (curva característica GL 1)	4 g (curva característica GL 2)	0,7 g (curva caracte- rística GL 1)
Resistencia al im- pacto 2,3 ms según EN 60068-2-27 (im- pacto mecánico)	50) g	50 g	20 g

Condiciones de proceso - celda de medida cerámico/metálica

Temperatura de proceso

Versión	Rangos de temperatura		
	p _{abs} ≥ 50 mbar	p _{abs} ≥ 10 mbar	p _{abs} ≥ 1 mbar
Estándar	-12 +150 °C (+10 +284 °F)		
Rango de temperatura am- pliado	-12 +180 °C (+10 +356 °F)	-12 +160 °C (+10 +320 °F) -12 +120 °C (+10 +248 °F)	
	-12 +200 °C (+10 +392 °F)		(

Reducción de temperatura

Fig. 35: Reducción de temperatura IPT-2x, versión hasta +150 °C (+302 °F)

- 1 Temperatura de proceso
- 2 Temperatura ambiente

¹⁸⁾ Configuración de equipo adecuada para vapor

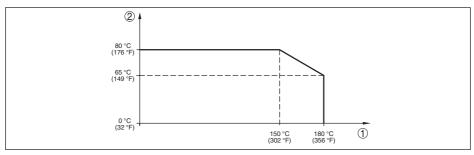


Fig. 36: Reducción de temperatura IPT-2x, versión hasta +180 °C (+356 °F)

- 1 Temperatura de proceso
- 2 Temperatura ambiente

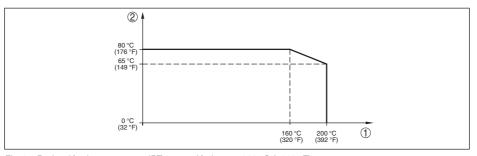


Fig. 37: Reducción de temperatura IPT-2x, versión hasta +200 °C (+392 °F)

- 1 Temperatura de proceso
- 2 Temperatura ambiente

Presión de proceso

Presión de proceso permisible ver especificación " *Process pressure*" en la placa de

características

Esfuerzo mecánico19)

Resistencia a las vibraciones con 4 g 5 ... 200 Hz según EN 60068-2-6 (vibra-

ción con resonancia)

Resistencia a choques térmicos 50 g, 2,3 ms según EN 60068-2-27 (choque mecánico)

20)

Datos electromecánicos - versión IP66/IP67 e IP66/IP68 (0,2 bar) 21)

Opciones de la entrada de cable

Entrada de cables
 M20 x 1,5; ½ NPT

Prensaestopas
 M20 x 1,5; ½ NPT (ø cable véase tabla abajo)

− Tapón ciego
 M20 x 1,5; ½ NPT

Tapón roscado
 ½ NPT

¹⁹⁾ Según la versión de equipo

²⁰⁾ 2 g con la versión de carcasa de acero inoxidable de dos cámaras

²¹⁾ IP66/IP68 (0,2 bar) solo con presión absoluta.

Material prensaestopas/inserto	Diámetro de cable			
de junta	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA/NBR	√	√	-	√
Latón, niquelado/NBR	√	√	-	_
Acero inoxidable/NBR	-	-	√	-

Sección del cable (Bornes elásticos)

Cable macizo, hilo
 Hilo con terminal
 2.2.5 mm² (AWG 24 ... 14)
 Milo con terminal
 Milo con terminal
 Milo con terminal

Datos electromecánicos - versión IP66/IP68 (1 bar)

Cable de conexión, datos mecánicos

- Estructura Conductor, descarga de presión, capilar compensa-

dor de presión, trenzado de apantallamiento, película

metálica, camisa

Longitud estándar
 Radio de flexión mín. (para
 5 m (16.4 ft)
 25 mm (0.984 in)

25 °C/77 °F)

- Diámetro apróx. 8 mm (0.315 in)

Color - versión PEColor - versión PURAzul

Cable de conexión, datos eléctricos

- Sección de conductor 0,5 mm² (AWG Nº 20) - Resistencia del conductor R΄ 0,037 Ω /m (0.012 Ω /ft)

Datos electromecánicos - versión IP68 (25 bar)

Cable de unión del sensor de valores de medición - carcasa externa, datos mecánicos

Estructura
 Conductor, descarga de presión, capilar compensador

de presión, trenzado de apantallamiento, película metá-

lica, camisa 22)

Longitud estándar
 Longitud máxima
 Radio de flexión mín. para 25 °C/77 °F
 25 mm (0.985 in)

Diámetro apróx. 8 mm (0.315 in)

MaterialColorNegro, azul

Cable de unión del sensor de valores de medición - carcasa externa, datos eléctricos

Sección de conductor
 Resistencia del conductor
 0,5 mm² (AWG Nº 20)
 Resistencia del conductor
 0,037 Ω/m (0.012 Ω/ft)

²²⁾ Capilares compensadores de presión no en la versión Ex d.

Módulo de visualización y configuración

Elemento de visualización Pantalla con iluminación de fondo

Visualización del valor de medición

- Cantidad de cifras 5

Elementos de configuración

- 4 teclas [OK], [->], [+], [ESC]

Tipo de protección

suelto IP20Montado en la carcasa sin tapa IP40

Materiales

- Carcasa ABS

Ventana Lamina de poliéster
 Seguridad funcional SIL-sin reacción

Interface para la unidad externa de visualización y configuración

Transmisión de datos digital (bus l²C)
Línea de conexión Cuatro hilos

Versión del sensor	Estructura del cable de conexión		
	Longitud máxima de línea	Blindado	
4 20 mA/HART	50 m		
4 20 mA/HART SIL	30111	_	
Profibus PA, Foundation Fieldbus	25 m	•	

Reloj integrado

Formato de fecha

Formato de tiempo

Zona de tiempo, ajuste de fábrica

Desviación de precisión de marcha

Día, mes año

12 h/24 h

CET

10,5 min/año

Magnitud de salida adicional - temperatura de la electrónica

Rango -40 ... +85 °C (-40 ... +185 °F)

 $\begin{array}{ll} \mbox{Resolución} & < \mbox{0,1 K} \\ \mbox{Error de medición} & \pm \mbox{3 K} \end{array}$

Disponibilidad de los valores de temperatura

Visualización
 Salida
 A través del módulo de visualización y configuración
 A través de la señal de salida correspondiente

Alimentación de tensión

Tensión de alimentación U_B 9 ... 32 V DC Tensión de alimentación U_B con ilumina- 13,5 ... 32 V DC

ción conectada

Cantidad de sensores por acoplador de 32 segmento DP-/PA máx.

Uniones de potencial y medidas eléctricas de separación en el equipo

Flectrónica Sin conexión al potencial

Separación galvánica

- entre la electrónica y las partes metá- Voltaje de referencia 500 V AC

licas del equipo

Conexión conductora Entre terminal de tierra y conexión a proceso metálica

Medidas de protección eléctrica 23)

Material de la carcasa	Versión	Grado de pro- tección según IEC 60529	Tipo de protección según NEMA
Plástico	Una cámara	IP66/IP67	Time 4V
	Dos cámaras	1F00/1F07	Type 4X
Aluminio	Una cámara	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP66/IP68 (1 bar)	Type 6P
	Dos cámaras	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
Acero inoxidable (electropulido)	Una cámara	IP66/IP67	Type 4X
		IP69K	
Acero inoxidable (fundición de	Una cámara	IP66/IP67	Type 4X
precisión)		IP66/IP68 (0,2 bar)	Type 6P
		IP66/IP68 (1 bar)	Type 6P
	Dos cámaras	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
Acero inoxidable	Sensor de valores medidos, versión con carcasa externa	IP68 (25 bar)	-

Conexión de la fuente de alimentación Redes de la categoría de sobretensión III de suministro

Altura sobre el nivel del mar

hasta 2000 m (6562 ft) - por defecto - con protección contra la sobretensión hasta 5000 m (16404 ft) preconectada

Grado de contaminación 24) Clase de protección (IEC/EN 61010-1)

²³⁾ Clase de protección IP66/IP68 (0,2 bar) sólo en combinación con la presión absoluta, porque no es posible la compensación de aire con el sensor completamente inundado

²⁴⁾ Cuando se utiliza con tipo de protección de carcasa cumplido.

9.2 Comunicación Profibus PA

A continuación se describen los detalles específicos del equipo requeridos. Más información sobre Profibus PA se puede encontrar en www.profibus.com.

Fichero maestro de equipos

El archivo maestro del instrumento (GSD) contiene los datos clave del equipo Profibus PA. Entre estos datos se cuentan p. ej. las tasas de transmisión permitidas, así como las informaciones sobre valores de diagnóstico y el formato del valor de medición suministrado por el equipo Profibus PA.

Para la herramienta de proyecto de la red Profibus se pone adicionalmente a disposición un fichero mapa de bits. El mismo se instala automáticamente junto con la integración del fichero GSD. El fichero mapa de bits sirve para la representación simbólica del equipo PA en la herramienta de configuración.

Número ID

Cada equipo Profibus recibe un número de identidad definido (Número ID) de la organización de usuarios de Profibus (PNO). Ese número de identificación está contenido también en el nombre del fichero GSD. Opcional a ese fichero GSD específico del fabricante PNO también pone a disposición un llamado fichero general específico del perfil GSD. Si se emplea ese fichero general GSD, hay que adaptar el sensor al número específico de identidad del perfil mediante el software DTM. De forma estándar el sensor trabaja con el número de identidad específico del fabricante. En caso de empleo del equipo en un acoplador de segmento SK-2 o SK-3 no se requiere ningún archivo especial GSD.

La tabla siguiente indica los ID de equipo y los nombres de archivo GSD.

ID del equipo		Nombre de archivo GSD	
WIKA	Clase de equipo en per- fil 3.02	WIKA	Específico del perfil
0F93 HEX	0x9702	WI0x6b0F93.GSD	PA139760.GSD (Multi_Va-riable)

Tráfico cíclico de datos

Desde el Primary clase 1 (p. Ej. PLC) se leen cíclicamente los datos de medición desde el sensor durante el funcionamiento. En el esquema de conexiones representado a continuación pueden verse los datos a los que tiene acceso el PLC.

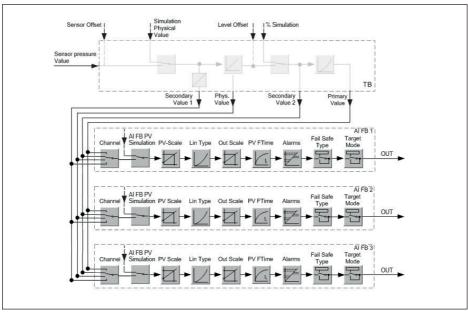


Fig. 38: IPT-2x: Block diagram with AI FB 1 ... AI FB 3 OUT values

TB Transducer Block

FB Function Block

Al Analogue Input

Módulos de los sensores PA

Para el tráfico cíclico de datos el IPT-2x pone a disposición los módulos siguientes:

- AI FB1 (OUT)
 - Valor de salida del Al FB1después de la escalada
- AI FB2 (OUT)
 - Valor de salida del Al FB2 después de la escalada
- AI FB3 (OUT)
 - Valor de salida del Al FB3 después de la escalada
- Free Place
 - Hay que utilizar ese módulo si no puede emplearse un valor en el telegrama de datos del tráfico cíclico de datos (p. Ej. Sustitución del valor de temperatura y del Additional Cyclic Value)

Como máximo pueden haber tres módulos activos. Con estos módulos puede determinarse, con ayuda del software de configuración del Profibusmaster, la estructura del telegrama de datos cíclico. La forma de procedimiento depende del software de configuración correspondiente.

Indicaciones:

Hay dos versiones de módulos:

- Short para Profibusmaster, que soporta solamente un "Identifier Format"-Byte, p. Ej. Allen Bradley
- Long para Profibusmaster que soporta solamente un "Identifier Format" Byte, p. Ej. Siemens S7-300/400

Ejemplos de estructuras de telegramas

A continuación se representan ejemplos de posibilidad de combinación de módulos y la estructura del telegrama correspondiente.

Ejemplo 1

- AI FB1 (OUT)
- AI FB2 (OUT)
- AI FB3 (OUT)

Byte- No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
For- mato	IEEE-754-Floating point value			Estado IEEE-754-Floating point value				Estado	IEEE	Estado					
Value	AI FB1 (OUT) AI			Al FB1	AI FB2 (OUT)				Al FB2	AI FB3 (OUT)				AI FB3	

Ejemplo 2

- AI FB1 (OUT)
- Free Place
- Free Place

Byte-No.	1	2	3	4	5			
Formato	IEEE-754-Floating point value Status							
Value	AI FB1 (OUT) AI FB1							

Indicaciones:

maicaciones

En este ejemplo los bytes 6-15 no están ocupados.

Formato de datos de la señal de salida

Byte4	Byte3	Byte2	Byte1	Byte0				
Status	Va	Value (IEEE-754)						

Fig. 39: Formato de datos de la señal de salida

El byte de estado equivale al perfil 3,02 "Profibus PA Profile for Process Control Devices" codificado. EL estado "Valor de medición OK" está codificado como 80 (hex) (Bit7 = 1, Bit6 ... 0 = 0).

El valor de medición se transfiere como número de coma flotante de 32 Bit en formato IEEE-754.

		-	Byte	e n					Byte n+1			Byte n+2							Byte n+3												
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
VZ	27	26	25	24	23	2 ²	21	20	2-1	2-2	2-3	2-4	2.5	2-6	2-7	2-8	2-9	210	211	212	2 ¹³	214	215	216	217	218	219	220	221	222	2 -23
Sign Bit	1		Exp	one	ent				Significant			Significant									Significant										

Value = (-1)^{VZ} • 2 (Exponent - 127) • (1 + Significant)

Fig. 40: Formato de datos del valor de medición

Codificación del bit de estado para el valor de salida PA

Otras informaciones sobre la codificación del byte de estado se encuentran en la Device Description 3.02 en www.profibus.com.

Código de estado	Descripción según la norma Profibus	Causa posible
0 x 00	bad - non-specific	Actualización Flash activa
0 x 04	bad - configuration error	Error de ajuste Error de configuración en la escala PV (PV-Span too small) Falta de concordancia de la unidad de medida Error en la tabla de linealización
0 x 0C	bad - sensor failure	Error de hardware Error del transductor Error de pulso de fuga Error de disparo
0 x 10	bad - sensor failure	Error de ganancia del valor de mediciónError de medición de temperatura
0 x 1f	bad - out of service constant	Modo "Out Of Service" conectado
0 x 44	uncertain - last unstable value	Valor de sustitución Failsafe (Failsafe-Mode = "Last va- lue" y valor de medición valido desde la conexión)
0 x 48	uncertain substitute set	Conectar simulación Valor de sustitución Failsafe (Failsafe-Mode = "Fsafe value")
0 x 4c	uncertain - initial value	Valor de sustitución Failsafe (Failsafe-Mode = "Last valid value" y todavía ningún valor de medición valido desde la conexión)
0 x 51	uncertain - sensor; con- version not accurate - low limited	Valor del sensor < limite inferior
0 x 52	uncertain - sensor; con- version not accurate - high limited	Valor del sensor > limite superior
0 x 80	good (non-cascade) - OK	ОК
0 x 84	good (non-cascade) - active block alarm	Static revision (FB, TB) changed (activa durante 10 seg , después de la escritura del parámetro de categoría estática)
0 x 89	good (non-cascade) - ac- tive advisory alarm - low limited	Lo-Alarm
0 x 8a	good (non-cascade) - ac- tive advisory alarm - high limited	Hi-Alarm
0 x 8d	good (non-cascade) - ac- tive critical alarm - low limited	Lo-Lo-Alarm
0 x 8e	good (non-cascade) - ac- tive critical alarm - high limited	Hi-Hi-Alarm

9.3 Cálculo de la desviación total

La desviación total de un transmisor de presión indica el erro de medición máximo a esperar en la práctica. La misma se denomina también desviación práctica máxima o error de empleo.

Según DIN 16086, la desviación total F_{total} es la suma de la desviación básica F_{perf} y la estabilidad a largo plazo F_{etah} :

$$F_{total} = F_{perf} + F_{stab}$$

A su vez, la desviación básica F_{pert} está compuesta por la variación térmica de la señal cero y el margen de salida F_{τ} (error de temperatura), así como por la desviación de medición F_{ν} :

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

La variación térmica de la señal cero y el rango de salida F_{τ} aparece en el capítulo " Datos técnicos". Allí la temperatura básica F_{τ} aparece representada gráficamente. Hay que multiplicar ese valor con factores adicionales FMZ y FTD en dependencia de la versión de la celda de medición y Turn Down.

Estos valores aparecen también en el capítulo " Datos técnicos".

Esto vale primero para la salida de señal digital mediante HART, Profibus PA, Foundation Fieldbus o Modbus.

En caso de una salida de 4 \dots 20 mA también se añade la variación térmica de la salida de corriente F_a :

$$F_{\text{nerf}} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

Aquí los signos de fórmula han sido resumidos para una mejor descripción:

- F_{total}: Desviación total
- F Desviación básica
- F_{stab}: estabilidad a largo plazo
- F_x: Variación térmica de la señal cero margen de salida (Error de temperatura)
- Fκ: Error de medición
- F: Variación térmica de la salida de corriente
- FMZ: Factor adicional versión de la sonda de medición
- FTD: Factor adicional Turn Down

9.4 Cálculo de la desviación total - Ejemplo práctico

Datos

Medición de presión en tubería 4 bar (400 KPa), temperatura del medio 40 °C

IPT-2x con rango de medida 10 bar, error de medición < 0,1 %, conexión a proceso G1 (celda de medida piezorresistiva)

Los valores requeridos para error de temperatura $F_{\tau\tau}$ desviación de medición $F_{\kappa l}$ y estabilidad a largo plazo $F_{\epsilon l}$, se toman de los datos técnicos.

1. Cálculo del Turn Down

TD = 10 bar/4 bar, TD = 2.5 : 1

2. Determinación del error de temperatura $\mathbf{F}_{_{\mathrm{T}}}$

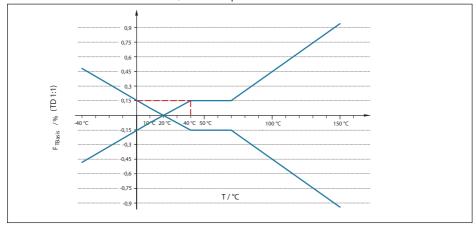


Fig. 41: Determinación del error de temperatura básico para el ejemplo anterior: $F_{TBasis} = 0.15\%$

Clase de precisión	0,075 %, 0,1 %	0,2 %
Factor FMZ	1	3

Tab. 33: Determinación del factor adicional celda de medida para el ejemplo anterior: $F_{MZ} = \frac{1}{2}$

Turn Down	TD 1:1	TD 2,5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1,75	3	5,5	10,5

Tab. 34: Determinación del factor adicional Turn Down para el ejemplo anterior: $F_{TD} = \frac{1,75}{1}$

 $F_T = F_{TBasis} x F_{MZ} x F_{TD}$

 $F_{T} = 0.15 \% \times 1 \times 1.75$

 $F_{T} = \frac{0.26 \%}{0.000}$

3. Determinación de la desviación de medición y de la estabilidad a largo plazo

Clase de precisión	Falta de linealidad, histéresis y no repetibilidad						
	TD ≤ 5:1	TD > 5:1					
0,05 %	< 0,05 %	< 0,01 % x TD					
0,1 %	< 0,1 %	< 0,02 % x TD					
0,2 %	< 0,2 %	< 0,04 % x TD					

Tab. 35: Determinación de la desviación de medición a partir de la tabla: F_{1/2} = <mark>0,1 %</mark>

Versión	
Rangos de medición > 1 bar	< 0,1 % x TD/año
Rangos de medición > 1 bar, líquido de aislamiento aceite sintético, membrana Elgiloy (2.4711)	< 0,15 % x TD/año
Rango de medición 1 bar	< 0,15 % x TD/año

Versión	
Rango de medición 0,4 bar	< 0,35 % x TD/año

Tab. 36: Determinación de la estabilidad a largo plazo a partir de la tabla, contemplación durante un año: F_{stab}= = 0,1 % x TD/año

4. Cálculo de la desviación total - Salidas de señal digital

- Paso 1: precisión básica F_{perf}

$$\begin{aligned} F_{perf} &= \sqrt{((F_T)^2 + (F_{KI})^2)} \\ F_T &= 0.26 \% \\ F_{KI} &= 0.1 \% \\ F_{perf} &= \sqrt{(0.26 \%)^2 + (0.1 \%)^2)} \\ F_{perf} &= 0.28 \% \end{aligned}$$

- Paso 2: Desviación total F_{total}

- Paso 2: Desviacion total
$$F_{total}$$

$$F_{total} = F_{perf} + F_{stab}$$

$$F_{perf} = 0.281 \% \text{ (Resultado del paso 1)}$$

$$F_{stab} = (0.1 \% \text{ x TD)}$$

$$F_{stab} = (0.1 \% \text{ x 2.5)}$$

$$F_{stab} = 0.25 \%$$

$$F_{total} = 0.28 \% + 0.25 \% = 0.53 \%$$

La desviación total de la medición es con ello de 0,53 %.

Desviación de medición en bar: 0,53 % de 4 bar = 0,021 bar

El ejemplo indica que el error de medición puede ser considerablemente mayor en la práctica que la precisión básica. Las causas son la influencia de la temperatura y el Turn Down.

9.5 Dimensiones

Carcasa de plástico

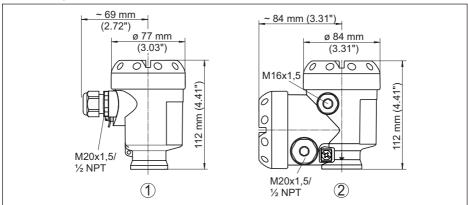


Fig. 42: Variantes de carcasa en grado de protección IP66/IP67; 1 bar (con módulo de visualización y configuración integrado aumenta la altura de la carcasa en 9 mm/0.35 in)

- 1 Cámara única de plástico
- 2 Dos cámaras de plástico

Carcasa de aluminio

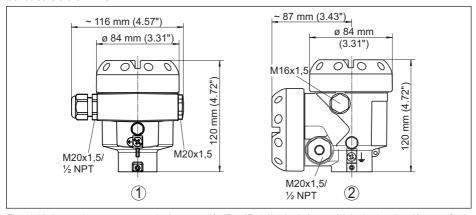


Fig. 43: Variantes de carcasa en grado de protección IP66/IP68 (0,2 bar), (con módulo de visualización y configuración integrado aumenta la altura de la carcasa en 9 mm/0.35 in)

- 1 Aluminio de cámara única
- 2 Aluminio de cámara doble

Carcasa de aluminio en grado de protección IP66/IP68 (1 bar)

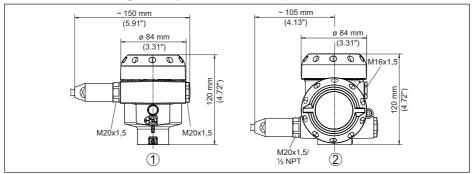


Fig. 44: Variantes de carcasa en grado de protección IP66/IP68 (1 bar), (con módulo de visualización y configuración integrado aumenta la altura de la carcasa en 9 mm/0.35 in)

- 1 Aluminio de cámara única
- 2 Aluminio de cámara doble

Carcasa de acero inoxidable

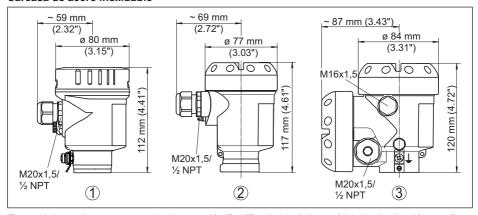


Fig. 45: Variantes de carcasa en grado de protección IP66/IP68 (0,2 bar), (con módulo de visualización y configuración integrado aumenta la altura de la carcasa en 9 mm/0.35 in)

- 1 Cámara única de acero inoxidable (electropulida)
- 2 Cámara única de acero inoxidable (Fundición de precisión)
- 2 Cámaras doble de acero inoxidable (Fundición de precisión)

Carcasa de acero inoxidable en grado de protección IP66/IP68 (1 bar)

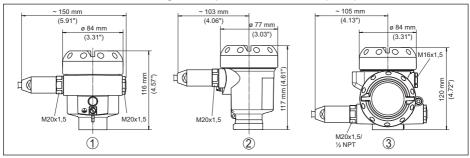


Fig. 46: Variantes de carcasa en grado de protección IP66/IP68 (1 bar), (con módulo de visualización y configuración integrado aumenta la altura de la carcasa en 9 mm/0.35 in)

- 1 Cámara única de acero inoxidable (electropulida)
- 2 Cámara única de acero inoxidable (Fundición de precisión)
- 2 Cámaras doble de acero inoxidable (Fundición de precisión)

carcasa acero inoxidable en grado de protección IP69K

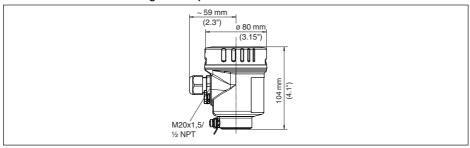


Fig. 47: Versión de carcasa en grado de protección IP69K (con módulo de visualización y configuración integrado aumenta la altura de la carcasa en 9 mm/0.35 in)

1 Cámara única de acero inoxidable (electropulida)

Caja remota con versión IP68 (25 bar)

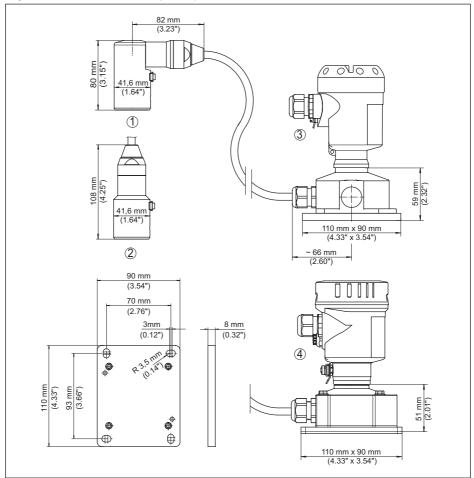


Fig. 48: Versión IP68 (25 bar) on carcasa externa

- 1 Salida de cable lateral
- 2 Salida de cable axial
- 3 Cámara única de plástico
- 4 Cámara única de acero inoxidable (electropulida)

IPT-2x, racor roscado no frontal rasante

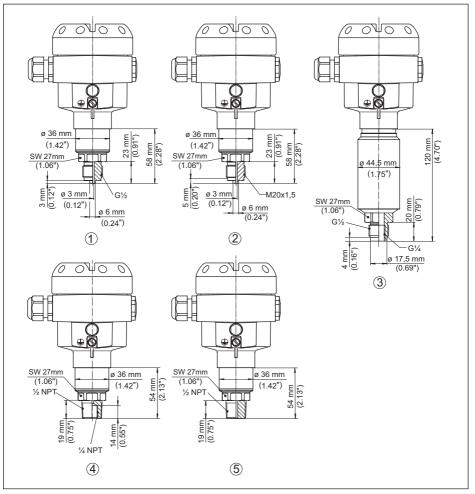


Fig. 49: IPT-2x, racor roscado no frontal rasante

- 1 G½ (EN 837); conexión de manómetro
- 2 M20 x 1,5 (EN 837); Conexión del manómetro
- 3 G½, interior G¼ (ISO 228-1)
- 4 1/2 NPT, interior 1/4 NPT (ASME B1.20.1)
- 5 ½ NPT PN 1000

IPT-2x, racor roscado frontal rasante

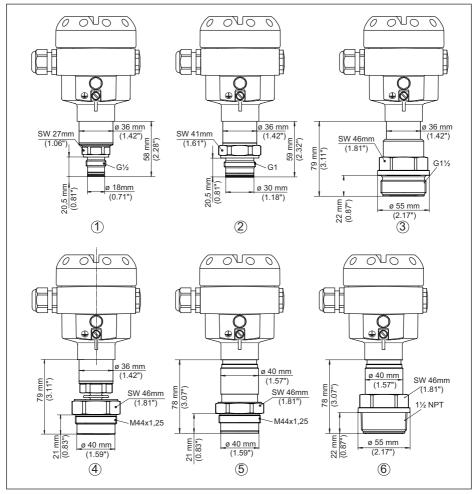
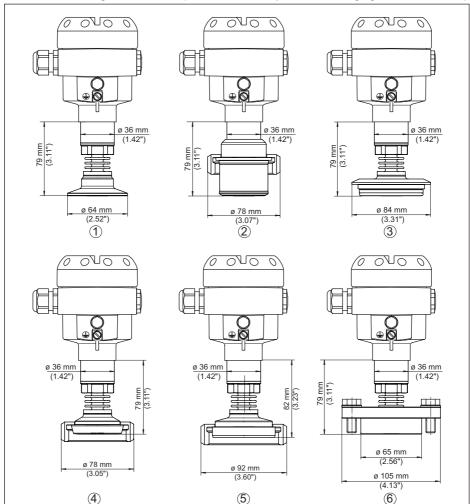



Fig. 50: IPT-2x, racor roscado frontal rasante

- 1 G½ (ISO 228-1) con anillo en O
- 2 G1 (ISO 228-1) con anillo en O
- 3 G1½ (DIN 3852-A)
- 4 M44 x 1,25 (DIN 13); tornillo de presión: aluminio
- 5 M44 x 1,25 (DIN 13); tornillo de presión: 316L
- 6 11/2 NPT (ASME B1.20.1)

IPT-2x, conexión higiénica +150 °C (Celda de medida piezorresistiva/galga extensométrica)

Fig. 51: IPT-2x, conexión higiénica +150 °C (Celda de medida piezorresistiva/galga extensométrica)

- 1 Clamp 2" PN 16 (ø 64 mm), (DIN 32676, ISO 2852)
- 2 Conexión aséptica con tuerca de unión ranurada F40 PN 25
- 3 Varivent N50-40 PN 25
- 4 Soporte tubular DN 40 PN 40 (DIN 11851)
- 5 Soporte tubular DN 50 PN 25 Form A (DIN 11864)
- 6 DRD PN 40

IPT-2x, conexión higiénica +150 °C (celda de medida metálico/cerámica)

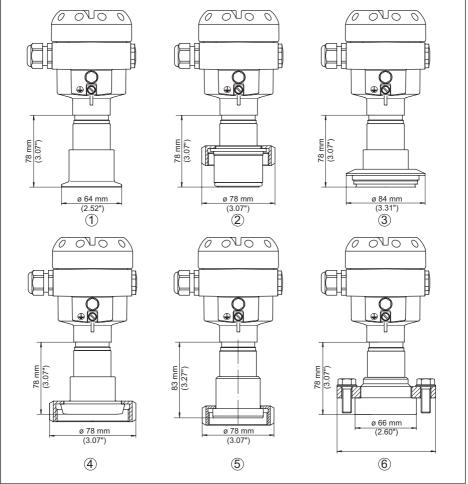


Fig. 52: IPT-2x, conexión higiénica +150 °C (celda de medida metálico/cerámica)

- 1 Clamp 2" PN 16 (ø 64 mm), (DIN 32676, ISO 2852)
- 2 Conexión aséptica con tuerca de unión ranurada F40 PN 25
- 3 Varivent N50-40 PN 25
- 4 Soporte tubular DN 40 PN 40 (DIN 11851)
- 5 Soporte tubular DN 50 PN 25 Form A (DIN 11864)
- 6 DRD PN 40

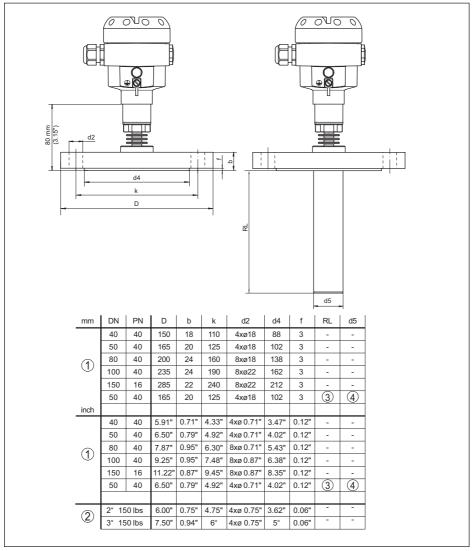


Fig. 53: IPT-2x, conexión de brida +150 °C (Celda de medida piezorresistiva/galga extensométrica)

- 1 Conexión por brida según DIN 2501
- 2 Conexión por brida según ASME B16.5
- 3 En dependencia del pedido
- 4 En dependencia del pedido

IPT-2x, conexión de brida +180 °C/+200 °C (celda de medición cerámica/metálica)

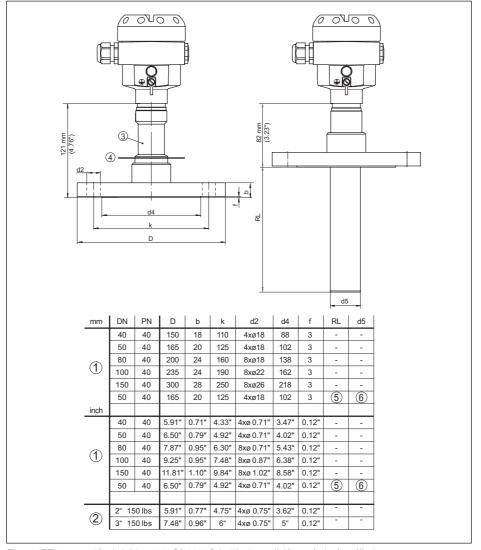


Fig. 54: IPT-2x, conexión de brida +180 °C/+200 °C (celda de medición cerámica/metálica)

- 1 Conexión por brida según DIN 2501
- 2 Conexión por brida según ASME B16.5
- 3 Con adaptador de temperatura hasta +180 °C
- 4 Chapa de protección de temperatura hasta hasta +200 °C
- 5 En dependencia del pedido
- 6 En dependencia del pedido

9.6 Marca registrada

Todas las marcas y nombres comerciales o empresariales empleados pertenecen al propietario/autor legal.

INDEX

Α

Acceso servicio de asistencia 43 Al FB1 Function Block 38 Ajustar fecha/hora 42 Ajustar visualización 40 Ajuste 37

- Presión de proceso 36
- -Sistema 31
- -Unidad 34

Aplicaciones de oxigeno 14 Archivo GSD 71

Atenuación 39

В

Byte de estado valor de salida PA 74

C

Cambiar idioma 39
Channel 38
Código de error 49, 50, 51
Código QR 7
Compensación de presión 16, 17
– Estándar 15

-Fx d 15

Concepto de hermetización 10 Conexión eléctrica 22

Configuración de medición 17, 18, 19

Copiar ajustes del sensor 42 Corrección de posición 34

D

Direccionamiento del hardware 33 Direccionamiento por software 33 Dirección del equipo 33 Documentación 7

Ε

Ejemplo de parametrización 35 Eliminación de fallo 51 Escala 38 Estructura del telegrama 73

F

Fallo

- Corrección 51

Fichero maestro de equipos 71 Formato de datos señal de salida 73

ı

Iluminación del display 40

Indicador de seguimiento 41

L

Linealización 38

M

Mantenimiento 47 Medición de presión de proceso 17 Memoria de valores medidos 47 Menú principal 32 Módulos PA 72

N

NAMUR NE 107 48 Número de serie 7

P

Placa de tipos 7 Principio de funcionamiento 8

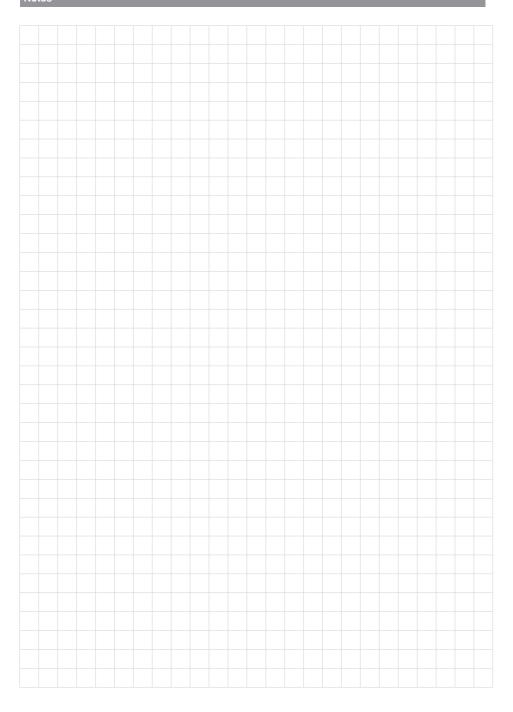
R

Reset 42

S

Simulación 41

T


Tráfico cíclico de datos 71

U

Unidad de escalada 38

v

Valores por defecto 44

Fecha de impresión:

Las informaciones acera del alcance de suministros, aplicación, uso y condiciones de funcionamiento de los sensores y los sistemas de análisis corresponden con los conocimientos existentes al momento de la impresión.

WIKA Alexander Wiegand SE & Co. KG

Alexander-Wiegand-Straße 30 63911 Klingenberg Germany Phone (+49) 9372/132-0

E-mail: info@wika.de

www.wika.de